
An Evaluation of Productivity and Performance in the EPEEC project

Tom Vander Aa <tom.vanderaa@imec.be>, ExaScience Life Lab at imec, Belgium
Antonio Peña <antonio.pena@bsc.es>, Barcelona Supercomputing Centre, Spain

The EPEEC European Project [1] is developing parallel programming environments to cope with
heterogeneous exascale supercomputers and turn them into manageable platforms for domain
application developers. One of its main goals is to combine high-performance with high
programmer productivity.

To achieve this, EPEEC builds on and integrates existing European technology such as automatic
generation of directives with the Parallelware tools [2], task-based programming with OmpSS [3]
and asynchronous communication using GASPI [4]. EPEEC extends these technologies by
providing an integrated set of programming guidelines for parallel applications [6], improving
support for tasking on accelerators and support for eventually consistent collectives, amongst
many other.

SMURFF, (Scalable Matrix Factorization Framework [5]) is one EPEEC’s driver application. SMURFF
implements a set of high-performance matrix factorization methods that are use for recommender
systems (RS). SMURFF is used in many domains ranging from marketing to drug discovery [7], on
extremely large datasets and by users that have little experience with low-level optimizations for
HPC systems. These last two items make support for high-productivity high-performance
programming crucial.

In this poster we will present the productivity and performance improvements we were able to
achieve by applying EPEEC’s guidelines on the SMURFF application. We will show the performance-
productivity trade-offs using two types of examples:

1. Small change in code, large impact in productivity or performance. In some examples a
small change in the code (e.g., adding a single #pragma) can result in a significant
performance improvement. We show examples of what the user can expect from the
automatically added directives by the parallelization tools, and examples from adding
manual directives for accelerator off-loading.

2. Comparison of different application codes. Sometimes it is needed to rewrite a significant
part of the application to evaluate two or more EPEEC programming models. In this case
we compare effort versus performance of different parallel versions of the same application
code.

Acknowledgments

This work has been supported by the EU H2020 FET-HPC project EPEEC (contract #801051).

References

1. EPEEC: https://epeec-project.eu/
2. Parallelware Technology: https://www.appentra.com/parallelware/
3. The OmpSS Programming Model: https://pm.bsc.es/ompss
4. GASPI: http://www.gaspi.de/
5. SMURFF: https://github.com/ExaScience/smurff
6. EPEEC Programming Guidelines: https://epeec-project.eu/results/programming-guidelines
7. Sturm, N., Mayr, A., Le Van, T. et al. Industry-scale application and evaluation of deep

learning for drug target prediction. J Cheminform 12, 26 (2020).
https://doi.org/10.1186/s13321-020-00428-5

