
PRACE AUTUMN SCHOOL 2021

FUNDAMENTALS OF BIOMOLECULAR SIMULATIONS AND
VIRTUAL DRUG DEVELOPMENT

September 20�24 2021
Organized by

The school is organised in partnership with AstraZeneca and

NostrumBiodiscovery



Parallelisation Paradigms
Introduction to methodologies for parallelisation, application of MPI

and OpenMP

Dr. Valentin Pavlov

September 20, 2021

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 2 / 39



Contents

Introduction � the case for parallel; levels of parallelism;

Discussion about each level;

The million dollar question � does it scale?

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 3 / 39



Introduction

Introduction

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 4 / 39



Introduction

The case for parallel

In many research �elds performing a virtual experiment in silico is
much cheaper and faster than performing a physical one in vivo or
in vitro;

Such experiments usually involve numerical solutions of some kind
of di�erential equations, be it of a system of particles, a �uid, or
some properties (e.g. heat exchange);

Speci�cally, molecular dynamics (MD) simulations work by solving
the equations of motion of a system of particles, in which the
interactions are given by the chemical bonds and constraints
between atoms, van Der Waals forces, Coulomb forces, etc.;

Given the forces that act on each particle and its mass, using
Newton's 2nd Law, the acceleration is calculated and then
integrated to get the new position of each particle;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 5 / 39



Introduction

The case for parallel

New positions lead to new forces and the whole process is repeated
in a next time step;

A typical time step in a MD simulation is around 2 fs;

The required simulation time depends on the experiment, but is
usually in hundreds and thousands of ns range;

A 100 ns experiment requires 50,000,000 steps of 2 fs each;

The number of particles in the simulation also varies widely by
experiment, but can easily be in the order of 100M or even billions
of atoms;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 6 / 39



Introduction

The case for parallel

A simulation of 100M atoms over 50M time steps would take
several months on a single contemporary computing core,
obviously unacceptable;

The solution is to parallelise: split the task among multiple
computing cores, which work together towards achieving the
common goal;

Di�erent algorithms require di�erent ways to split the work;

Di�erent hardware architectures support di�erent options;

Thus there are di�erent parallelisation paradigms to choose from;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 7 / 39



Introduction

Levels of parallelism

Modern HPC systems support:

Instruction-level parallelism (superscalar pipelined cores,
hyper-threading);
Superword-level parallelism (vectorization, SIMD);
Core-level parallelism (multiple cores in a single CPU socket);
Socket-level parallelism (multiple multi-core CPUs inside a compute
node);
Node-level parallelism (multiple independent nodes with multiple
multi-core CPUs in each of them);

In addition some systems support accelerators (e.g. GPU cards):

A single GPU card can execute hundreds of threads simultaneously
(SIMT);
A single compute node can have multiple GPU cards installed;
An HPC system can have multiple compute nodes with multiple
GPU cards each;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 8 / 39



Introduction

Levels of parallelism

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 9 / 39



Introduction

Levels of parallelism

A further level of complexity comes with the memory hierarchy �
not all storage is created equal;

HDD/SSD o�ers big persistent storage, but are slow;
DDR RAM o�ers relatively fast access, but is not persistent;
Multi-level cache � L3, L2, L1 � each of them faster, but smaller
than the previous;

A good parallel implementation must take into account all of the
above and utilize all possible levels of parallelism while observing
data locality (keeping the data as close as possible to the process
that uses it);

This is quite a complex problem, and not only for the
programmers, but also for the end-users � while a package may
support all of the above, it is usually not trivial to make a run as
optimal as possible;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 10 / 39



Parallelisation details

Parallelisation details

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 11 / 39



Parallelisation details

Instruction-level parallelism

Happens inside a single core;

Allows a single core to execute several instructions per cycle;

Achieved by having instruction pipelines with several independent
processing stages;

Known commercially as Hyper-threading;

Usually bad for HPC � hyper-threads share the same L1 cache,
which leads to cache misses if utilized;

Know your machine � how many actual cores per node it has;

Rule of the thumb � inside a node, do not parallelise more

than the number of cores; do not count on

hyper-threading;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 12 / 39



Parallelisation details

Superword-level parallelism

Allows for the simultaneous execution of several identical
operations on di�erent inputs (e.g. 4 simultaneous additions);

Known as vectorization or SIMD � Single Instruction Multiple
Data;

All modern CPUs cores support such instructions, usually some
form of SSE, AVX, etc.

Latest AVX-512 supports 16 simultaneous FLOP;

From user perspective vectorization is usually hidden � there is
nothing to do, it all happens automatically;

Know your machine and your software � what SIMD instructions
are available and if the package is compiled with the proper
support for them;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 13 / 39



Parallelisation details

Core-level parallelism and Socket-level parallelism

A compute node in an HPC system usually contains several CPUs
(sockets), and each CPU contains several compute cores;

Each core can idenepdently run a separate logical thread of
execution;

A single computing process can split itself into logical threads,
each carrying out a portion of the computation;

This is known as multi-threading;

The logical threads have access to the same memory, hence it is
a.k.a. shared memory model;

Shared memory is good, since it means no data needs to be
transferred;

But still, it requires synchronization between threads so the result
is deterministic;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 14 / 39



Parallelisation details

Multi-threading

There are many multi-threading parallelisation paradigms, the two
most notable being:

fork-join model;
task-based parallelism;

The main di�erence between them is that in the fork-join model
each thread is supposed to execute the same sequence of steps
(task), while in the task-based parallelism each thread can execute
a completely di�erent task;

For example:

Mount the 4 wheels of the car at the same time � fork-join model;
Mount the back bumber while at the same time loading washer
liquid for the wipers � task-based parallelism;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 15 / 39



Parallelisation details

Fork-join paradigm

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 16 / 39



Parallelisation details

OpenMP, pthreads, TBB, etc.

OpenMP is a set of libraries, tools and compiler support;

It is the de-facto standard for multi-threading in HPC applications;

pthreads is the linux native thread support;

TBB (Thread Building Blocks) is a library mostly used for
task-based parallelism (but not only);

Many other alternatives;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 17 / 39



Parallelisation details

Core/Socket con�guration and Thread a�nity

The most bene�cial con�guration is for one core in a node to run
one thread;

However, there is a nuance � it is not the same if we have 1 socket
with 12 cores or 2 sockets with 6 cores each;

The di�erence is that cores inside a socket share its cache (the
fastest memory);

If cores inside a socket run threads that work with data chunks
that are close to one another, we could bene�t from cache hits;

This helps with data locality, which is extremely important and
means that the data is as close (fast to reach) as possible to the
core that needs it;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 18 / 39



Parallelisation details

Core/Socket con�guration and Thread a�nity

Every multi-threading implementation has some way to control the
distribution of threads between cores � so called thread a�nity;

Compare (for 2 sockets with 2 cores each):

�close� thread a�nity:

thread 0 goes to core 0, which is on socket 0;
thread 1 goes to core 1, which is on socket 0;
thread 2 goes to core 2, which is on socket 1;
thread 3 goes to core 3, which is on socket 1;

�spread� thread a�nity:

thread 0 goes to core 0, which is on socket 0;
thread 1 goes to core 2, which is on socket 1;
thread 2 goes to core 1, which is on socket 0;
thread 3 goes to core 3, which is on socket 1;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 19 / 39



Parallelisation details

Some OpenMP environment variables

OpenMP runtime con�guration is controlled through OS
environment variables;

There are a lot of them, but the most important ones are:

OMP_NUM_THREADS � controls how many threads each process will
see;
OMP_PLACES � �sockets�, �cores�, �master�. Most probably �cores� is
what you want;
OMP_PROC_BIND � controls thread a�nity when bound to cores.
�close� or �spread�;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 20 / 39



Parallelisation details

Important things for end-users re: multi-threading

Know your hardware:

Know the total number of cores in a node;
Know the core/socket con�guration;

Know your software:

Does it support multi-threading of some form (usually: yes);
What exactly (OpenMP, pthreads, TBB, etc.);
How to enable it and how to control the number of threads;
How to control thread a�nity and which setting is bene�cial (trial
and error unless speci�ed in the package docs);

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 21 / 39



Parallelisation details

Node-level parallelism

An HPC system is composed of a multitude of compute nodes,
each of which is multi-socket, multi-core, each core SIMD-capable
and superscalar;

Usually the compute nodes have direct access only to their own
RAM: distributed-memory model;

Except in some special cases (embarassingly parallel), this requires
communication between the compute nodes in order to transfer the
data to the process that needs it, and this adds overhead;

This communication can be point-to-point (one process sends data
to one [other] process), or collective (one or more processes send
data to one or more processes);

There is a problem with collective communications: in the worst
case, it grows as the square of the number of the participants;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 22 / 39



Parallelisation details

Point-to-point (P2P) MPI

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 23 / 39



Parallelisation details

Collective MPI

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 24 / 39



Parallelisation details

Important things for end-users re: MPI

MPI is available on all kinds of hardware, including laptops;

All compute cores in a HPC system / cluster participate in a pool;
MPI decides which copy of your process on which node/core to
send;

Each copy is identi�ed by its MPI rank. The rank is usually
written in the log �les and may help trace faults during execution;

Similar to thread a�nity, the MPI system may have a way for you
to specify process a�nity � which rank goes to which core on
which node;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 25 / 39



Parallelisation details

Important things for end-users re: MPI

A program is run (usually) by e.g. mpirun -np 4 /bin/date

(But not on HPC system, at least not directly, where it happens
through a job scheduler (e.g. slurm);

The cores of a node can also be used to run MPI tasks (processes)
instead of OpenMP threads of a single process (for example when a
program does not support OpenMP);

So, if we have 4 nodes with 16 cores each, we can:

OMP_NUM_THREADS=16 mpirun -np 4 someprogram

OMP_NUM_THREADS=1 mpirun -np 64 someprogram

Usually, the �rst of these is more bene�cial, since the 16 threads on
each node share the memory of a single process and no data
transfers are needed;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 26 / 39



Parallelisation details

Important things for end-users re: MPI

Know your hardware and OS:

Know the number of nodes available and the core/socket
con�guration of each node;
Know how to run MPI jobs, particularly the batch �les of the
scheduler on a HPC system;
Know how to query the scheduler for the status of your jobs;

Know your software:

Does it support multi-threading of some form � if yes, it is usually
more bene�cial to make the number of ranks = number of nodes
and number of threads = number of cores on each node; otherwise
number of ranks = total number of cores;
Limitations of their software and its scalability � to not waste
resources;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 27 / 39



Parallelisation details

GPUs

A compute node may have one or more accelerators, usually GPU
card(s), which are exceptionally fast for certain computations and
are utilized in many implementations;

They utilize SIMT � Single Instruction Multiple Threads � similar
to SIMD but with hundreds ot identical threads working on
di�erent data;

Apart from the synchronization overhead, there is also overhead
from the need to transfer the data from the CPU memory to the
GPU memory and back;

If multiple GPUs on di�erent nodes are used, these memory
transfers pile up on top of the transfers needed between the nodes;

Some systems support Direct GPU-GPU transfer, which might be
faster;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 28 / 39



Strong and Weak Scaling

Strong and Weak Scaling

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 29 / 39



Strong and Weak Scaling

Serial and parallel regions

An algorithm is a sequence of steps, much like a cooking recepie;

Some of the steps are independent of one another and so can be
executed in parallel;

That is, step A is independent of Step B, if Step B cannot
in�uence Step A's input (there is no data dependency);

The portions of the algorithm that can be parallelized are called
parallel regions, the rest are serial regions;

The more time an algorithm spends in parallel regions, the better
it is suited for HPC � it is more scalable;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 30 / 39



Strong and Weak Scaling

Speedup

S =
T1

TN

T1 is the time for running the algorithm on 1 processor; TN is the
time for running it on N processors;

Ideally S = N , independent of N (linear scaling), but this is rarely
achieved in practice;

Although for small N sometimes S >N is achieved due e.g. to
cache (superscalability);

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 31 / 39



Strong and Weak Scaling

Amdahl's Law

S =
1

(1− p) + p
N

p is the portion of the parallel regions of the algorithm (e.g. 70%);

This is valid for �xed workload, while the number of processes N
vary;

The dependence of S from N under �xed workload is called strong

scaling;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 32 / 39



Strong and Weak Scaling

Amdahl's Law

Daniels220, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg, via Wikimedia

Commons

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 33 / 39



Strong and Weak Scaling

Amdahl's Law

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 34 / 39



Strong and Weak Scaling

Amdahl's Law � observation

When N →∞, S → 1
1−p

Even if 99.9% of the algorithm is parallel, the speedup can not go
over 1,000, regardless of the number of processors used;

This looks very hopeless and discouraging;

Note that the communication time counts towards the serial
regions;

That's why it is extremely important for the programmers to try
and hide the communication time and overlap it with computation
� otherwise there is no hope for strong scalability;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 35 / 39



Strong and Weak Scaling

Gustafson's Law

Amdahl's Law is valid when there is a �xed workload � e.g. it
shows what will happen if you keep the problem the same, but
throw more resources on it;

There is another way to utilize more resources � use them to solve
bigger problems;

S = (1− p) + p×N

This is valid for �xed time, but the workload and number of
processors N vary;

The dependence of S from N under �xed time is called weak

scaling;

Shows how the solution time varies for a �xed problem size per

processor;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 36 / 39



Strong and Weak Scaling

Gustafson's Law

Peahihawaii, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Gustafson.png, via Wikimedia

Commons

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 37 / 39



Strong and Weak Scaling

Does it scale?

It's generally easier to achieve weak scaling;

But if the software uses naked collective MPI (e.g. alltoall), weak
scaling will degrage as well;

Also, not all algorithms are created equal � e.g. an O(N3)
algorithm will only gain 26% speedup upon doubling the resources;

At some point it becomes worthless to throw resources at a given
problem, and it is up to you to be able to judge that limit;

For this, you need to perform scalability tests � e.g. run your
simulation, but with limited number of time steps, and run it with
di�erent con�guration (threads/mpi tasks), on increasing number
of cores/nodes until you �nd out that it doesn't make sense to
increase them anymore;

Then, request that much resources for your �nal simulation;

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 38 / 39



Strong and Weak Scaling

Questions and Answers

Thank you for your attention!
Questions?

Dr. Valentin Pavlov Parallelisation Paradigms September 20, 2021 39 / 39


	Introduction
	Parallelisation details
	Strong and Weak Scaling

