This course will take place as an online event. The link to the streaming platform will be provided to the accepted registrants only.

Interactive exploration and analysis of large amounts of data from scientific simulations, in-situ visualization and application control are convincing scenarios for explorative sciences. Based on the open source software Jupyter or JupyterLab, a way has been available for some time now that combines interactive with reproducible computing while at the same time meeting the challenges of support for the wide range of different software workflows.

Even on supercomputers, the method enables the creation of documents that combine live code with narrative text, mathematical equations, visualizations, interactive controls, and other extensive output. However, a number of challenges must be mastered in order to make existing workflows ready for interactive high-performance computing. With so many possibilities, it's easy to lose sight of the big picture. This course provides a detailed introduction to interactive high-performance computing.

The following topics are covered:

  • Introduction to Jupyter
  • Parallel computing using Jupyter
  • Interactive & in-situ visualization
  • From ipywidgets to dashboards

Prerequisites:

Experience in Python

Date:

5-7 April 2022, 09:00-13:00

Application
Registrations are only considered until 20 March 2022, the maximal number of participants is limited. Applicants will be notified, whether they are accepted for participitation.

Instructors:

Jens Henrik Göbbert, Christian Witzler, Jülich Supercomputing Centre

Starts
Ends
CET
Online