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Future of Vectorization
I Remember AVX-512?

(Image: Intel)

I Larger vectors and more features (e.g. masking)
I How can we validate their efficiency now?
I Do I really need a physical system?
⇒ Intel Software Development Emulator



Why Intel Software Development Emulator

I Emulate a wide range of Intel microarchitectures - present and
future

I Alternative to measure FLOPs and understand effects of
SIMD instructions like:

I Are the latest SIMD instructions used?
I How many elements of vectors are used (masking)?
I What are estimated speedups even there’s no access to HW?

I Memory footprint of application



Getting Started

I Latest version of Intel Software Development Emulator is 8.4.
I Easy to use:

$ sde [options] -- application [app_options]

⇒ No recompilation and no debug information required!
I Some interesting microarchitectures1 (used as [options]):

I -hsw: Haswell (all SIMD up to AVX2)
I -skx: Skylake Server (CORE-AVX512)
I -knl: Knights Landing (MIC-AVX512)

I Only instructions will be emulated missing on the underlying
architecture

I Numerical FP results are identical to native execution
I Help via sde -help or sde -long-help

1KNC is not supported

https://software.intel.com/en-us/articles/intel-software-development-emulator


Histogram Tool

I Which instructions types are executed by an application (esp.
which SIMD extension)?

I The histogram tool counts the instructions by groups (like
*avx256 or *avx512)

I Enabled by option -mix:
$ sde -mix -- application [app_options]

Output can be found in file sde-mix-out.txt2

I Statistics are provided by:
I Thread
I Function per thread
I Summary of entire run

I Use -mix filter rtn to filter a single routine

2Can be changed by option -omix <mix.out>



Histogram Tool - Example
Compile and run SDE:
> g++ vec.cpp -O2 -mavx2 -ftree - vectorize -o vec

> c++ filt _Z3vecPdS_S_
vec( double *, double *, double *)

> sde64 -hsw -mix -mix_filter_rtn " _Z3vecPdS_S_ " -- ./ vec

File vec.cpp:
...
__attribute__ (( noinline ))
void vec( double *a, double *b, double *c)
{

int i;
for (i = 0; i < 100000; ++i) {

c[i] = a[i] * b[i];
}

}
...

File sde-mix-out.txt
(simplified):
...
FN: vec( double *, double *, double *) IMG: vec

AVX vmovupd xmm0 , {mem}
AVX vmovupd xmm1 , {mem}
AVX vinsertf128 ymm0 , ymm0 , {mem}
AVX vinsertf128 ymm1 , ymm1 , {mem}, 0x1
AVX vmulpd ymm0 , ymm0 , ymm1
AVX vmovups xmmword ptr {mem}, xmm0
AVX vextractf128 {mem}, ymm0 , 0x1

BASE add rax , 0x20 % =4
BASE cmp rax , 0 xc3500 % =100000
BASE jnz 0 x558ee45c9780
...
* avx128 75001
* avx256 100000
...

Information on instruction groups like *avx128 or *avx256 is here

https://software.intel.com/en-us/articles/intel-software-development-emulator#HISTO


SIMD Mask Profiling

I For AVX512 (KNL and SKX) the instruction set allows direct
masking of SIMD elements

I Masking reduces the advantage of SIMD but sometimes is
necessary

I SDE can profile the amount of masked elements to help
understand the impact

I Option -dyn mask profile creates file
sde-dyn-mask-profile.txt

I Summary shows masked computations and data transfers
(dataxfer, scatter and gather)



SIMD Mask Profiling - Example

Compile and run SDE:
> icpc mask.cpp -xmic - avx512 -o mask

> sde64 -knl -dyn_mask_profile -- ./ mask

File mask.cpp:
...
void mask( double * restrict r, double *a,

double *b, double *c, bool *msk)
{

int i ;
for (i = 0; i < N; ++i) {

if (msk[i])
// FMA
r[i] = a[i] * b[i] + c[i];

else
// FMA
r[i] = c[i] * b[i] + a[i];

}
}
...

File sde-dyn-mask-profile.txt (simplified):
...
<summarytable >

mask cat vec - length # elements element_s element_t | icount comp_count %max -comp
masked dataxfer 512b 8elem 64b fp |1250 6666 66.660
masked mask 512b 8elem 64b fp |1250 6666 66.660

unmasked dataxfer 64b 1elem 64b fp |1 1 100.000
unmasked dataxfer 512b 8elem 64b fp |1250 10000 100.000
unmasked dataxfer 512b 16 elem 32b fp |3750 60000 100.000
unmasked mask 64b 1elem 64b fp |1 1 100.000
unmasked mask 512b 8elem 64b fp |1250 10000 100.000

</ summarytable >
...



SIMD Mask Profiling - Example cont’d

. . . and detailed histogram (popcount*) of elements computed:

...
<instruction -details >

<IP > 0 x400bf7 </IP >
<disassembly > vfmadd213pd zmm5{k1}, zmm4 , zmmword ptr [rcx+rax *8] </ disassembly >
<source -location >

<img > /home/ zit0029 /lab/SDE/mask </img >
<routine > _Z4maskPdS_S_S_Pb </routine >

</source -location >
<dynamic -stats >

<execution -counts > 1250 </execution -counts >
<computation -count > 6666 </ computation -count >
<percent -of -max - computation > 66.660 </percent -of -max - computation >
<scalarish > 0 </scalarish >
<popcount >

<popcount5 > 834 </popcount5 >
<popcount6 > 416 </popcount6 >

</popcount >
</dynamic -stats >

</ instruction -details >
...



Calculating FLOP

I SDE can help to calculate the effective FLOPs of an
application even if simulated

I Follow these steps:
1. Use histogram tool (instruction mix) to get sum of all

*elements fp [FPtype] [#elements] where
FPtype = [float|double] and #elements are SIMD elements
processed.

2. Add the FMA operations (one operation of the FMA was
already considered above):
Search for VFMADD... and VFMSUB..., like
VFMADD213PD YMMqq YMMqq YMMqq

3. Consider masking (for AVX512):
3.1 Use mask profiling from SDE and add the comp count

counters with category mask and element t being fp
3.2 Same as for unmasked FMA, add 2nd FLOP of the masked

variants (VFMADD...MASK...)

The full guide can be found here

https://software.intel.com/en-us/articles/calculating-flop-using-intel-software-development-emulator-intel-sde


Memory Footprint

I SDE can record how often a cache-line (64 byte) was
referenced (load or store).

I Its simple but can be helpful to see changes of number of
cache lines being used.

I Option -footprint creates sde-footprint.txt:
Lists:

1. # of cache line loads and stores
2. # of pages touched by loads and stores

But requires -footprint page size option for page size.



Which SDE Data is Important?

The following information from SDE could be important for you:
I Ratio of SIMD instructions to non-SIMD:

RSIMD = *sse-packed + *avx128 + *avx256 + *avx512
*total

I The ratio further decreases with more masked SIMD
operations:

Compcount ≤ Instcount ∗ VL
I Calculating the FLOP of a routine can help estimating the

impact of SIMD:
Comparing FLOPs3 by normalizing with scalar vs. vectorized
overall instruction count (FLOP per instruction)

3Compilers could change FLOPs slightly for different compilations



Lab Time!
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