
Future of Vectorization

Georg Zitzlsberger
georg.zitzlsberger@vsb.cz

5th of July 2017

mailto:georg.zitzlsberger@vsb.cz

Agenda

Future of Vectorization

Why Intel Software Development Emulator

Getting Started

Histogram Tool

SIMD Mask Profiling

Calculating FLOP

Memory Footprint

Which SDE Data is Important?

Future of Vectorization
I Remember AVX-512?

(Image: Intel)

I Larger vectors and more features (e.g. masking)
I How can we validate their efficiency now?
I Do I really need a physical system?
⇒ Intel Software Development Emulator

Why Intel Software Development Emulator

I Emulate a wide range of Intel microarchitectures - present and
future

I Alternative to measure FLOPs and understand effects of
SIMD instructions like:

I Are the latest SIMD instructions used?
I How many elements of vectors are used (masking)?
I What are estimated speedups even there’s no access to HW?

I Memory footprint of application

Getting Started

I Latest version of Intel Software Development Emulator is 8.4.
I Easy to use:

$ sde [options] -- application [app_options]

⇒ No recompilation and no debug information required!
I Some interesting microarchitectures1 (used as [options]):

I -hsw: Haswell (all SIMD up to AVX2)
I -skx: Skylake Server (CORE-AVX512)
I -knl: Knights Landing (MIC-AVX512)

I Only instructions will be emulated missing on the underlying
architecture

I Numerical FP results are identical to native execution
I Help via sde -help or sde -long-help

1KNC is not supported

https://software.intel.com/en-us/articles/intel-software-development-emulator

Histogram Tool

I Which instructions types are executed by an application (esp.
which SIMD extension)?

I The histogram tool counts the instructions by groups (like
*avx256 or *avx512)

I Enabled by option -mix:
$ sde -mix -- application [app_options]

Output can be found in file sde-mix-out.txt2

I Statistics are provided by:
I Thread
I Function per thread
I Summary of entire run

I Use -mix filter rtn to filter a single routine

2Can be changed by option -omix <mix.out>

Histogram Tool - Example
Compile and run SDE:
> g++ vec.cpp -O2 -mavx2 -ftree - vectorize -o vec

> c++ filt _Z3vecPdS_S_
vec(double *, double *, double *)

> sde64 -hsw -mix -mix_filter_rtn " _Z3vecPdS_S_ " -- ./ vec

File vec.cpp:
...
__attribute__ ((noinline))
void vec(double *a, double *b, double *c)
{

int i;
for (i = 0; i < 100000; ++i) {

c[i] = a[i] * b[i];
}

}
...

File sde-mix-out.txt
(simplified):
...
FN: vec(double *, double *, double *) IMG: vec

AVX vmovupd xmm0 , {mem}
AVX vmovupd xmm1 , {mem}
AVX vinsertf128 ymm0 , ymm0 , {mem}
AVX vinsertf128 ymm1 , ymm1 , {mem}, 0x1
AVX vmulpd ymm0 , ymm0 , ymm1
AVX vmovups xmmword ptr {mem}, xmm0
AVX vextractf128 {mem}, ymm0 , 0x1

BASE add rax , 0x20 % =4
BASE cmp rax , 0 xc3500 % =100000
BASE jnz 0 x558ee45c9780
...
* avx128 75001
* avx256 100000
...

Information on instruction groups like *avx128 or *avx256 is here

https://software.intel.com/en-us/articles/intel-software-development-emulator#HISTO

SIMD Mask Profiling

I For AVX512 (KNL and SKX) the instruction set allows direct
masking of SIMD elements

I Masking reduces the advantage of SIMD but sometimes is
necessary

I SDE can profile the amount of masked elements to help
understand the impact

I Option -dyn mask profile creates file
sde-dyn-mask-profile.txt

I Summary shows masked computations and data transfers
(dataxfer, scatter and gather)

SIMD Mask Profiling - Example

Compile and run SDE:
> icpc mask.cpp -xmic - avx512 -o mask

> sde64 -knl -dyn_mask_profile -- ./ mask

File mask.cpp:
...
void mask(double * restrict r, double *a,

double *b, double *c, bool *msk)
{

int i ;
for (i = 0; i < N; ++i) {

if (msk[i])
// FMA
r[i] = a[i] * b[i] + c[i];

else
// FMA
r[i] = c[i] * b[i] + a[i];

}
}
...

File sde-dyn-mask-profile.txt (simplified):
...
<summarytable >

mask cat vec - length # elements element_s element_t | icount comp_count %max -comp
masked dataxfer 512b 8elem 64b fp |1250 6666 66.660
masked mask 512b 8elem 64b fp |1250 6666 66.660

unmasked dataxfer 64b 1elem 64b fp |1 1 100.000
unmasked dataxfer 512b 8elem 64b fp |1250 10000 100.000
unmasked dataxfer 512b 16 elem 32b fp |3750 60000 100.000
unmasked mask 64b 1elem 64b fp |1 1 100.000
unmasked mask 512b 8elem 64b fp |1250 10000 100.000

</ summarytable >
...

SIMD Mask Profiling - Example cont’d

. . . and detailed histogram (popcount*) of elements computed:

...
<instruction -details >

<IP > 0 x400bf7 </IP >
<disassembly > vfmadd213pd zmm5{k1}, zmm4 , zmmword ptr [rcx+rax *8] </ disassembly >
<source -location >

 /home/ zit0029 /lab/SDE/mask
<routine > _Z4maskPdS_S_S_Pb </routine >

</source -location >
<dynamic -stats >

<execution -counts > 1250 </execution -counts >
<computation -count > 6666 </ computation -count >
<percent -of -max - computation > 66.660 </percent -of -max - computation >
<scalarish > 0 </scalarish >
<popcount >

<popcount5 > 834 </popcount5 >
<popcount6 > 416 </popcount6 >

</popcount >
</dynamic -stats >

</ instruction -details >
...

Calculating FLOP

I SDE can help to calculate the effective FLOPs of an
application even if simulated

I Follow these steps:
1. Use histogram tool (instruction mix) to get sum of all

*elements fp [FPtype] [#elements] where
FPtype = [float|double] and #elements are SIMD elements
processed.

2. Add the FMA operations (one operation of the FMA was
already considered above):
Search for VFMADD... and VFMSUB..., like
VFMADD213PD YMMqq YMMqq YMMqq

3. Consider masking (for AVX512):
3.1 Use mask profiling from SDE and add the comp count

counters with category mask and element t being fp
3.2 Same as for unmasked FMA, add 2nd FLOP of the masked

variants (VFMADD...MASK...)

The full guide can be found here

https://software.intel.com/en-us/articles/calculating-flop-using-intel-software-development-emulator-intel-sde

Memory Footprint

I SDE can record how often a cache-line (64 byte) was
referenced (load or store).

I Its simple but can be helpful to see changes of number of
cache lines being used.

I Option -footprint creates sde-footprint.txt:
Lists:

1. # of cache line loads and stores
2. # of pages touched by loads and stores

But requires -footprint page size option for page size.

Which SDE Data is Important?

The following information from SDE could be important for you:
I Ratio of SIMD instructions to non-SIMD:

RSIMD = *sse-packed + *avx128 + *avx256 + *avx512
*total

I The ratio further decreases with more masked SIMD
operations:

Compcount ≤ Instcount ∗ VL
I Calculating the FLOP of a routine can help estimating the

impact of SIMD:
Comparing FLOPs3 by normalizing with scalar vs. vectorized
overall instruction count (FLOP per instruction)

3Compilers could change FLOPs slightly for different compilations

Lab Time!

	Future of Vectorization
	Why Intel Software Development Emulator
	Getting Started
	Histogram Tool
	SIMD Mask Profiling
	Calculating FLOP
	Memory Footprint
	Which SDE Data is Important?

