PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

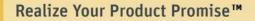
### **Express Introductory Training in ANSYS Fluent**

### Workshop 07 Tank Flushing

#### Dimitrios Sofialidis Technical Manager, SimTec Ltd.

Mechanical Engineer, PhD

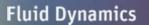
PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia












14.5 Release

### **NNSYS**°

### Workshop 07a Tank Flushing



**Structural Mechanics** 

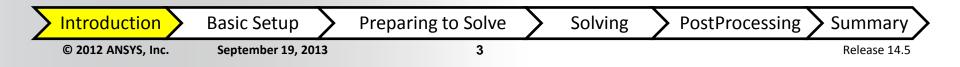
Electromagnetics

Systems and Multiphysics

### Introduction to ANSYS Fluent

# **ANSYS** Introduction [1]

#### Workshop Description:


In this workshop, you will model the **filling and emptying of a water tank**. The simulation will be **multiphase** (volume of fluid) and transient (time dependent).

#### Learning Aims:

- This workshop aims to teach skills in running multiphase simulation in Fluent. The entire simulation approach is covered, including:
  - Setting up a 2-phase simulation.
  - Using "patch" tools to control initialization.
  - Preparing a transient animation.
  - Using Solution Controls to modify the problem definition (turn off the valve).

#### **Learning Objectives:**

This workshop teaches skills in the use of multiphase modelling, transient flow modelling, generating images on–the–fly and preparing animations.



# ANSYS Mesh Import [1]

#### Start a new Fluent session.

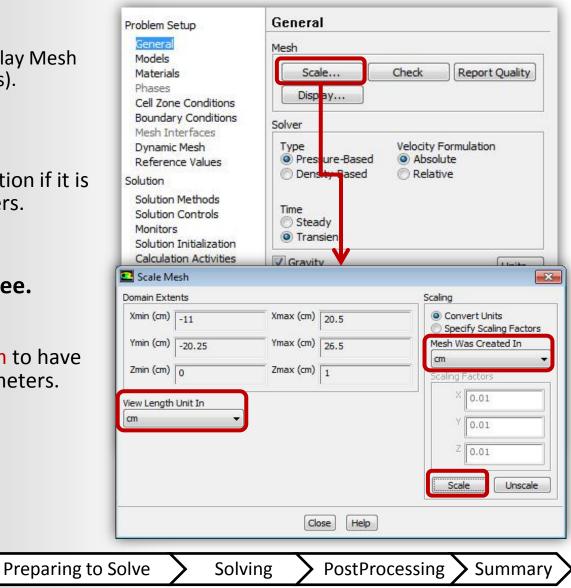
 3D, Double Precision and Display Mesh After Reading (Display Options).

#### Read or import the mesh file. tankflush.msh.gz

Use the parallel processing operation if it is available on the training computers.

#### Click General in the outline tree.

- Scale the mesh to units of cm.
- Set "View Length Unit In" to cm to have Fluent display lengths in centimeters.


**Basic Setup** 

September 19, 2013

- Verify the domain extents: -11 < x < 20.5 cm -20.25 < y < 26.5 cm 0 < z < 1 cm</li>
- Check the mesh.

Introduction

© 2012 ANSYS. Inc.



#### Mesh Import [2] **ANSYS**<sup>®</sup>

#### Orientate the view.

Ambient

Introduction

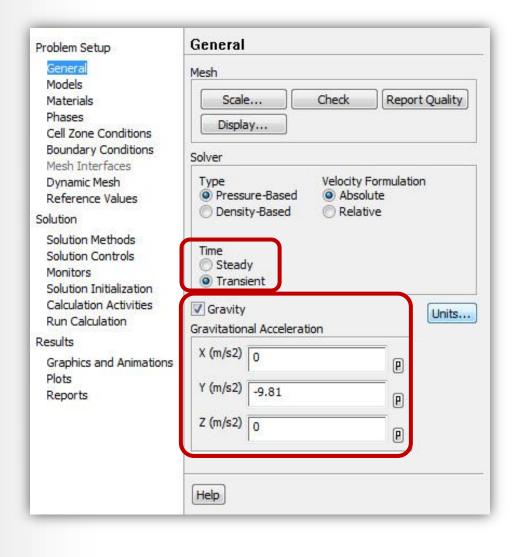
© 2012 ANSYS, Inc.

- Select "Graphics and Animations • the outline tree.
- Click "Views" button in the cent ulletpane.
- In the panel that opens select • "front" under Views and click "Apply", click "Auto Scale" and t "Close".

Outlet

**Basic Setup** 

September 19, 2013


Inlet

|        | Problem Setup                                                      | <b>Views</b>       | Views                  |                   |  |  |  |  |
|--------|--------------------------------------------------------------------|--------------------|------------------------|-------------------|--|--|--|--|
|        | General                                                            | Views<br>back      | Actions                | Mirror Planes 🔳 🗐 |  |  |  |  |
| ns" in | Models<br>Materials                                                | bottom<br>front    | Default                | sym2<br>sym1      |  |  |  |  |
| tre    | Phases<br>Cell Zone Condition<br>Boundary Condition                | lisometric         | Auto Scale<br>Previous |                   |  |  |  |  |
|        | Mesh Interfaces<br>Dynamic Mesh                                    | top                | Save                   | Define Plane      |  |  |  |  |
|        | Reference Values                                                   |                    | Read                   | Periodic Repeats  |  |  |  |  |
| then   | Solution Methods<br>Solution Controls<br>Monitors                  | Save Name<br>front | Write                  | Define            |  |  |  |  |
|        | Solution Initializatio<br>Calculation Activitie<br>Run Calculation | Apply              | mera Close             | Help              |  |  |  |  |
| t      | Results<br>Graphics and Anima                                      | tions              |                        |                   |  |  |  |  |
|        | Plots<br>Reports                                                   | Set Up             |                        |                   |  |  |  |  |
|        |                                                                    | Options            | Scene View             | vs                |  |  |  |  |
|        |                                                                    |                    |                        |                   |  |  |  |  |
|        |                                                                    | Help               |                        |                   |  |  |  |  |
|        |                                                                    | 1                  |                        |                   |  |  |  |  |

### **ANSYS Define Simulation Type**

#### In the General Panel.

- Choose Transient Solver.
- Enable Gravity.
- Set Gravitational Acceleration to -9.81 (m/s2) in the y direction.



PostProcessing

© 2012 ANSYS, Inc.

Introduction

September 19, 2013

**Basic Setup** 

Preparing to Solve

Solving

Summary Release 14.5

### **ANSYS** Enable Turbulence Model

Preparing to Solve

8

Solving

### Activate Models in the Outline Tree.

- Double–click Viscous–Laminar in the central pane under Models.
  - In the Viscous Model panel, select kepsilon (2 eqn).
  - Under k–epsilon model, select Realizable.
  - Retain defaults for all other settings.

**Basic Setup** 

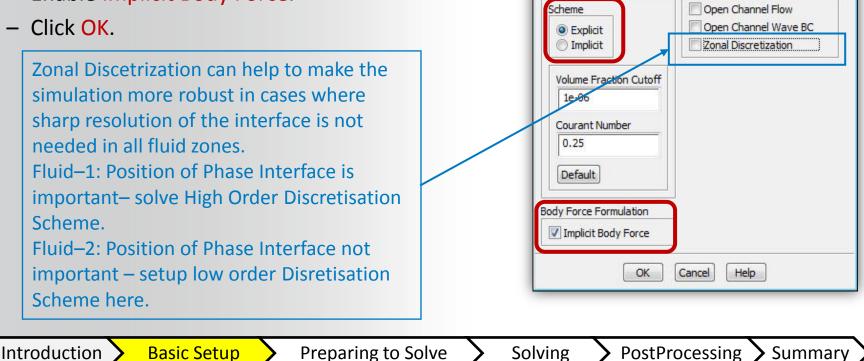
September 19, 2013

Click OK.

Introduction

© 2012 ANSYS, Inc.

| Viscous Model                                                                                                                                                                                                                                                                                                                                                     |                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Model                                                                                                                                                                                                                                                                                                                                                             | Model Constants                                                                |
| <ul> <li>Inviscid</li> <li>Laminar</li> <li>Spalart-Allmaras (1 eqn)</li> <li>k-epsilon (2 eqn)</li> <li>k-omega (2 eqn)</li> <li>Transition k-kl-omega (3 eqn)</li> <li>Transition SST (4 eqn)</li> <li>Reynolds Stress (7 eqn)</li> <li>Scale-Adaptive Simulation (SAS)</li> <li>Detached Eddy Simulation (DES)</li> <li>Large Eddy Simulation (LES)</li> </ul> | C2-Epsilon       TKE Prandtl Number       1       TDR Prandtl Number       1.2 |
| k-epsilon Model<br>Standard<br>RNG<br>Realizable<br>Near-Wall Treatment                                                                                                                                                                                                                                                                                           | User-Defined Functions  Turbulent Viscosity  none                              |
| Standard Wall Functions     Non-Equilibrium Wall Functions     Enhanced Wall Treatment     User-Defined Wall Functions  Options Full Buoyancy Effects                                                                                                                                                                                                             | Prandtl Number  TKE Prandtl Number  TDR Prandtl Number  none                   |
| ОК                                                                                                                                                                                                                                                                                                                                                                | Cancel Help                                                                    |


PostProcessing

Summary

#### **Enable VOF Multiphase Model ANSYS**®

#### Enable the VOF multiphase model.

- Double-click on Multiphase.
  - Enable "Volume of Fluid".
  - Set "Number of Fulerian Phases" to 2.
  - Ensure that Scheme is set to Explicit.
  - Enable Implicit Body Force.
  - Click OK.



Volume of Fluid Mixture Eulerian Wet Steam Coupled Level Set + VOF Level Set Volume Fraction Parameters Options

Multiphase Model

Model

O Off

9

X

Number of Eulerian Phases

2

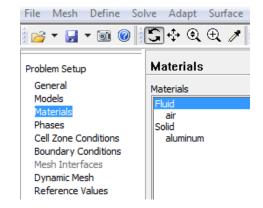
### **ANSYS** Materials and Phases

#### Add Water to Materials.

- Activate Materials in the Outline Tree.
- Click Create/Edit...
  - In the Materials panel, click Fluent Database...
  - Select "water-liquid" from the Fluent Fluid Materials list, click Copy and then click Close.

#### Define the phases.

- Activate Phases in the outline tree.
- Double–click phase–1 Primary Phase.
  - Change Name to water.
  - Ensure that water-liquid is selected under Phase Material.
  - Click OK.
- Double–click phase–2 Secondary Phase.


**Basic Setup** 

September 19, 2013

- Change Name to air.
- Select air.
- Click <mark>OK</mark>.

Introduction

© 2012 ANSYS, Inc.



| Primary Phase       |                |      |
|---------------------|----------------|------|
| lame                |                |      |
| water               |                |      |
| Phase Material wate | r-liquid 🔹     | Edit |
|                     | OK Cancel Help | ]    |

| Name           |                |
|----------------|----------------|
| air            |                |
| Phase Material | air 👻 Edit     |
|                | OK Cancel Help |

PostProcessing

Solving

Preparing to Solve

Summary

#### **Multiphase Model Setup ANSYS**<sup>®</sup> Phases Meshina Mesh Generation Phases **Define Phase Interactions.** Solution Setup water - Primary Phase air - Secondary Phase General Click the Interaction Button. Models • Materials Phases In the Phase Interaction Panel that opens, Cell Zone Conditions Boundary Conditions activate the Surface Tension tab. Mesh Interfaces Dynamic Mesh Select constant in the pull-down list and enter Reference Values Solution 0.072 N/m for the Surface Tension Coefficient. Solution Methods Solution Controls Click OK. Monitors Solution Initialization Calculation Activities ID 2 , Ędit Interaction... Dun Colculation Phase Interaction Drag Lift Wall Lubrication Turbulent Dispersion Turbulence Interaction Collisions Slip Heat Mass Reactions Surface Tension atization Interfacial Are Surface Tension Force Modeling Model Adhesion Options Continuum Surface Force Wall Adhesion Continuum Surface Stress Jump Adhesion Surface Tension Coefficients (n/m) air water Edit... constant • 0.072 OK Cancel Help rustriocessing Summary FIEDALING TO SOLVE IIIIIUUUUUUUI Dasic Setup JUIVIIIS 11 © 2012 ANSYS, Inc. September 19, 2013 Release 14.5

### **ANSYS** Set Operating Conditions

#### **Problem Setup>Cell Zone Conditions.**

- Click Operating Conditions... in the centre pane below the Cell Zone Conditions box.
  - Verify that Gravity is enabled and the Gravitational Acceleration is set correctly (-9.81 (m/s2) in the y direction).
  - Under Variable Density Parameters, activate Specified Operating Density.
  - Accept the default entry of 1.225 (kg/m3) for the Operating Density.

| Pressure |                                    | -    | Gravity                                                 |     |
|----------|------------------------------------|------|---------------------------------------------------------|-----|
|          | Operating Pressure (pase<br>101325 | cal) | Gravity<br>Gravitational Acceleration                   |     |
|          | 101325                             | P    |                                                         |     |
|          | ce Pressure Location               | _    | X (m/s2)                                                | P   |
| X (cm)   | 0                                  | P    | Y (m/s2) -9.81                                          | P   |
| Y (cm)   | 0                                  | e    | Z (m/s2) 0                                              | (P) |
| Z (cm)   | 0                                  | e    | Variable-Density Parameters                             |     |
| L        |                                    |      | Specified Operating Densit<br>Operating Density (kg/m3) | y.  |
|          |                                    |      | 1 225                                                   | e   |

The operating density should be set to the density of the **lightest fluid** in the domain when using the VOF model; otherwise, an erroneous hydrostatic pressure distribution will occur.

Solving

© 2012 ANSYS, Inc.

Introduction

September 19, 2013

**Basic Setup** 

Preparing to Solve

PostProcessing

Summary

# **ANSYS** Define Boundary Conditions [Inlet]

Preparing to

#### Problem Setup>Boundary Conditions.

- Double click the inlet boundary.
  - Select Normal to Boundary for Direction Specification Method.
  - For the turbulent quantities, select Intensity and Hydraulic Diameter, with TI of 5% and HD of 2.1 cm.
  - Click OK.
- In the Centre Pane, **select water** under Phase and double click on inlet.
  - Set the mass flow rate to 0.2 kg/s.
  - Click <mark>OK</mark>.
- In the Centre Pane, select air under Phase and double–click again on inlet.
  - Set the Mass Flow Rate of air to 0 (kg/s).

**Basic Setup** 

September 19, 2013

Click OK.

Introduction

© 2012 ANSYS, Inc.

| one Name                                                                                                        |                              | Phase              |                |   |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|----------------|---|
| inlet                                                                                                           |                              | mixtu              | re             |   |
| Momentum Thermal Radiation Specie                                                                               | es DPM Mu                    | ltiphase UDS       |                |   |
| Reference Frame                                                                                                 | e Absolute                   |                    |                | + |
| Supersonic/Initial Gauge Pressure (pascal                                                                       | ) 0                          | cor                | stant          | • |
| Direction Specification Method                                                                                  | d Normal to Bou              | undary             |                | • |
| Turbulence                                                                                                      |                              |                    |                |   |
| Specification Method                                                                                            | Intensity and H              | lydraulic Diameter |                | • |
|                                                                                                                 |                              | lent Intensity (%) | 5              |   |
|                                                                                                                 | Hydra                        | ulic Diameter (cm) | 2.1            |   |
|                                                                                                                 |                              |                    |                |   |
| 0                                                                                                               | K Cancel                     | Help               |                |   |
| Mass-Flow Inlet                                                                                                 | K Cancel                     | Help               |                |   |
|                                                                                                                 | K Cancel                     | Help               | Phase          |   |
| Mass-Flow Inlet                                                                                                 | K Cancel                     | Help               | Phase<br>water |   |
| Mass-Flow Inlet<br>Zone Name                                                                                    |                              |                    | water          |   |
| Mass-Flow Inlet<br>Zone Name<br>inlet<br>Momentum Thermal Radiation                                             | Species DP                   |                    | water          |   |
| Mass-Flow Inlet Zone Name inlet Momentum Thermal Radiation Mass Flow Specification Method                       | Species DP                   | M   Multiphase     | water          |   |
| Mass-Flow Inlet Zone Name inlet Momentum Thermal Radiation Mass Flow Specification Method                       | Species DP                   |                    | water          |   |
| Mass-Flow Inlet Zone Name inlet Momentum Thermal Radiation Mass Flow Specification Method Mass Flow Rate (kg/s) | Species DP                   | M   Multiphase     | water          |   |
| Mass-Flow Inlet Zone Name inlet Momentum Thermal Radiation Mass Flow Specification Method Mass Flow Rate (kg/s) | Species DP<br>lass Flow Rate | M   Multiphase     | water          |   |

# **ANSYS** Define Boundary Conditions [Outlet]

### **Problem Setup>Boundary Conditions.**

- Select mixture under Phase (in the centre pane).
- Select "Outlet" boundary.
  - For the turbulent quantities, select
     Intensity and Hydraulic Diameter, with
     TI of 5% and HD of 12.5 cm.
  - Click OK.
- In the centre pane, select "air" under Phase and click "Edit" again.
  - Switch to Multiphase tab and enter 1 for Backflow Volume Fraction.
  - Click <mark>OK</mark>.

|                               |                               | Phase          |
|-------------------------------|-------------------------------|----------------|
| outlet                        |                               | mixture        |
| Momentum Thermal Radi         | ation Species DPM Multiphas   | e UDS          |
| Gauge Pressu                  | re (pascal) 0                 | constant       |
| Backflow Direction Specificat | ion Method Normal to Boundary |                |
| 🔲 Radial Equilibrium Pressur  |                               |                |
| Turbulence                    |                               |                |
| ореспсацо                     | Intensity and Hydraulic I     | Diameter 🗸 🗸   |
|                               | Backflow Turbulent Inter      | nsity (%) 5    |
|                               |                               |                |
|                               | Backflow Hydraulic Diame      | eter (cm) 12.5 |

| one Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phase        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | air          |
| Momentum   Thermal   Radiation   Species   DPM Mu<br>Backflow Volume Fraction 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Itiphase UDS |
| a different the larger from the second |              |

 Introduction
 Basic Setup
 Preparing to Solve
 Solving
 PostProcessing
 Summary

 © 2012 ANSYS, Inc.
 September 19, 2013
 14
 Release 14.5

### **ANSYS** Define Boundary Conditions [Ambient]

#### Copy Boundary conditions from outlet to ambient.

- In the centre pane, click "Copy..."
  - Under "From Boundary Zone", select "Outlet".
  - Under "To Boundary Zone", select "Ambient".
  - Select "mixture" under "Phase" and click Copy.
  - Click OK when asked if you want to copy the boundary conditions for mixture.
  - Select "air" under "Phase" and again click Copy.
  - Click OK when asked if you want to copy the boundary conditions for air.
  - Close the Copy Conditions panel.

**Basic Setup** 

September 19, 2013

Introduction

© 2012 ANSYS, Inc.

The Copy Conditions panel is a quick way of transferring common settings from one boundary to another. The "To Boundary Zones" automatically displays boundaries of the same type as the "From Boundary Zone" selection.

| outlet       | ambient      |
|--------------|--------------|
| sym1<br>sym2 |              |
|              |              |
| Phase        |              |
| air          | •            |
| Con          | y Close Help |
| COP          |              |

Solving

Preparing to Solve

### **ANSYS Define Solution Methods and Controls**

#### **Problem Setup>Solution Methods.**

- Under Pressure–Velocity Coupling.
  - Set Scheme to **PISO**.
- Under Spatial Discretization.
  - Gradient Least Squares Cell Based.
  - Pressure PRESTO!
  - Momentum Second Order Upwind.
  - Turbulent Kinetic Energy and Turbulent Dissipation Rate – First Order Upwind.
  - Volume Fraction Geo Reconstruct.

#### **Problem Setup>Solution Controls.**

- Set the Under–Relaxation Factor for momentum to 0.3.
- Set the Under–Relaxation Factors for "Turbulent Kinetic Energy" and "Turbulent Dissipation Rate" to 0.5.

| Solution Methods                   |   |
|------------------------------------|---|
| Pressure-Velocity Coupling         |   |
| Scheme                             |   |
| PISO                               | - |
| Skewness Correction                |   |
| 1                                  |   |
| Neighbor Correction                | Ľ |
| 1                                  |   |
| Skewness-Neighbor Coupling         |   |
| Spatial Discretization             |   |
| Gradient                           |   |
| Least Squares Cell Based           | - |
| Pressure                           |   |
| PRESTO!                            | - |
| Momentum                           |   |
| Second Order Upwind                | - |
| Volume Fraction                    |   |
| Geo-Reconstruct                    | - |
| Turbulent Kinetic Energy           |   |
| First Order Upwind                 | - |
| ransient Formulation               | _ |
| First Order Implicit               | • |
| Non-Iterative Time Advancement     |   |
| Frozen Flux Formulation            |   |
| High Order Term Relaxation Options |   |
| Default                            |   |

Introduction Basic Setup Preparing to Solve Solving PostProcessing Summary
 © 2012 ANSYS, Inc. September 19, 2013
 16
 Release 14.5

## **ANSYS** Initialize the Initial Solution

Initially, the tank is filled to a **level of 6 cm** with water. Here you will first initialize the flow solution, then create an adaption register and use the register to define the initial location of the liquid surface.

- Initialize the flow field.
  - Select Solution Initialization in the outline tree.
  - Select "inlet" from "Compute from" dropdown list.
  - Set air volume fraction to 1.
  - Click Initialize.

This will instruct the solver to fill the tank with air. The next step is to partially fill the tank with water, resulting in the proper initial condition.

**Basic Setup** 

| olem Setup                 | Solution Initialization                                                         |     |
|----------------------------|---------------------------------------------------------------------------------|-----|
| odels<br>aterials<br>nases | nitialization Methods<br>() Hybrid Initialization<br>() Standard Initialization |     |
| ell Zone Conditions        | Compute from                                                                    |     |
| oundary Conditions         | inlet                                                                           |     |
|                            | Reference Frame                                                                 |     |
| eference Values            | Relative to Cell Zone     Absolute                                              |     |
| olution Methods            | nitial Values                                                                   | _   |
| onitors                    | X Velocity (m/s)                                                                | · · |
| olution Initialization     | 0                                                                               |     |
| alculation Activities      | Y Velocity (m/s)                                                                |     |
| ults                       | -0.8004598                                                                      | -   |
| raphics and Animations     | Z Velocity (m/s)                                                                |     |
| ots<br>eports              | 0                                                                               | 7   |
|                            |                                                                                 |     |
|                            | Turbulent Kinetic Energy (m2/s2)                                                | - = |
|                            | 0.00240276                                                                      | -   |
|                            | Turbulent Dissipation Rate (m2/s3)                                              |     |
|                            | 0.01255714                                                                      |     |
|                            | air Volume Fraction                                                             |     |
|                            | 1                                                                               |     |
|                            |                                                                                 | -   |
| [                          | Initialize Reset Patch                                                          |     |
|                            |                                                                                 |     |
|                            | Reset DPM Sources [ Reset Statistics ]                                          |     |
| [                          | Help                                                                            |     |
|                            |                                                                                 |     |
|                            | Initialize     Reset     Patch       Reset DPM Sources     Reset Statistics     |     |

Introduction

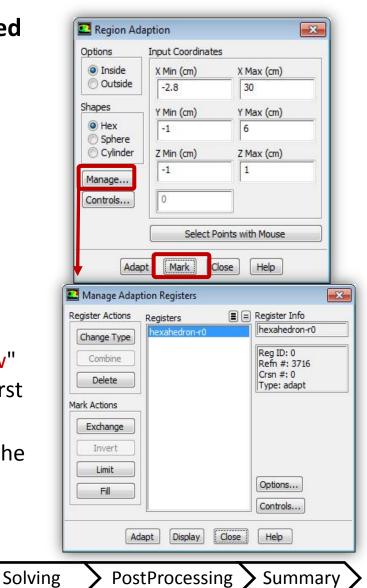
September 19, 2013

17

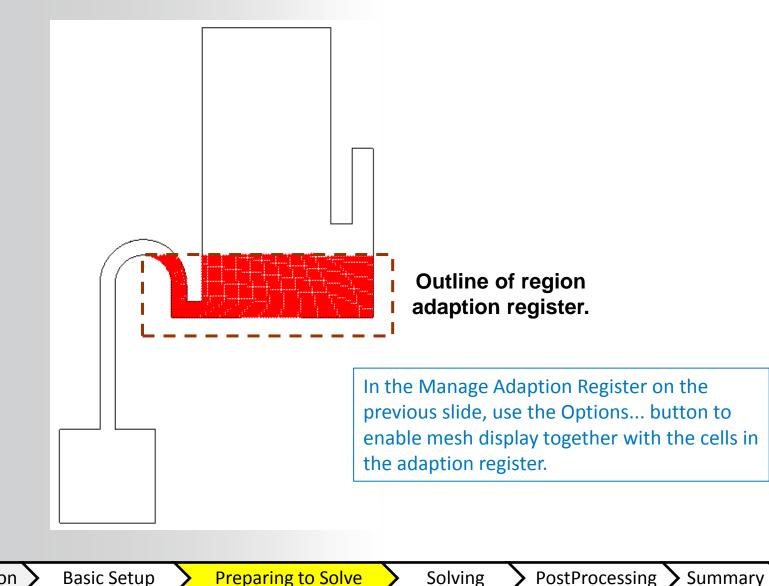
**Preparing to Solve** 

### **ANSYS** Patch the Initial Solution – Adaption Register [1]

- Next, define the region of the domain to be filled with liquid.
  - In the top menu, select Adapt>Region.
  - Enter the values shown in the panel to the right.
  - Click Mark. DO NOT CLICK ADAPT!


A message appears in the Fluent console informing you that 3716 cells have been marked.

- To view the marked cells, click Manage.
- Verify the register **hexahedron-r0** under Registers is selected and click **Display**.
- You may need to zoom in (use the "Fit to Window" icon) because the mesh was scaled since it was first displayed.
- Close the Manage Adaption Registers panel and the Region Adaption panel.


# The marked cells will be displayed in the graphics window (see next page).

**Basic Setup** 

Introduction © 2012 ANSYS, Inc.



#### **Patch the Initial Solution – Adaption Register [2] ANSYS**<sup>®</sup>

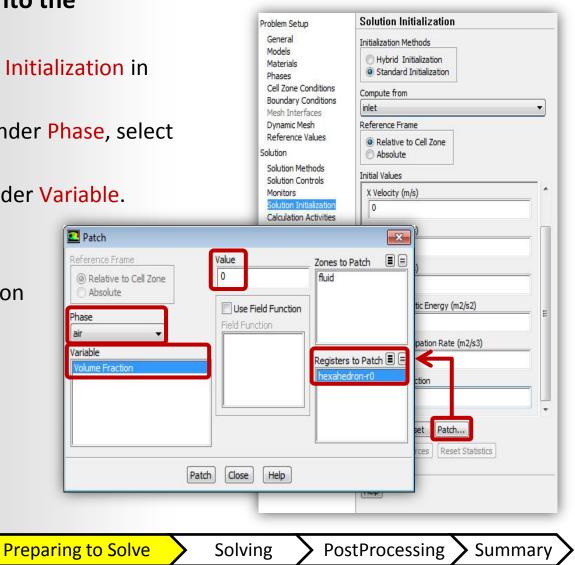


Introduction © 2012 ANSYS, Inc.

September 19, 2013

Preparing to Solve

19


Solving

PostProcessing Summary

Release 14.5

### **ANSYS** Patch the Initial Solution

- Patch the initial solution into the adaption register.
  - Click Patch under Solution Initialization in the outline tree.
  - In the panel that opens, under Phase, select air.
  - Select Volume Fraction under Variable.
  - Set Value to 0.
  - Under Registers
     to Patch, select the adaption register you created.
  - Click Patch.
  - Close the Patch panel.



Introduction

**Basic Setup** 

20

# **ANSYS** Initialize Display Settings [1]

Use the Arrange Windows layout button, and set up 2 graphics windows side-by-side.

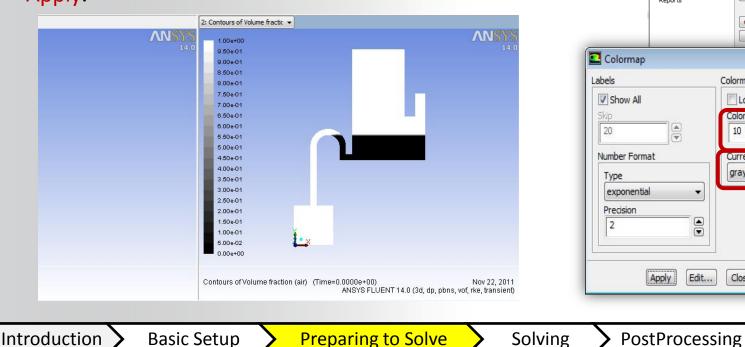
By clicking at Window 2 you can activate this Window to display the Initial Solution.

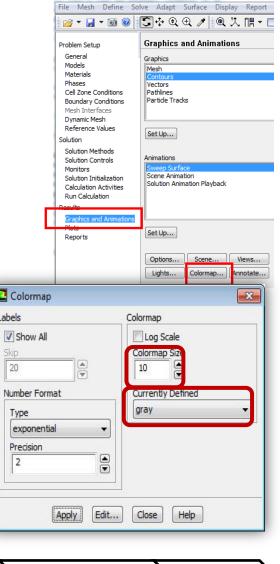
Window 1

- Choose Graphics and Animations in the Outline Tree.
- Choose Contour in Graphics.
  - Switch to Phases.
  - … Volume Fraction air.

| <ul> <li> choo</li> <li>Check</li> <li>Options</li> <li>Filled</li> <li>Node Values</li> <li>Global Range</li> <li>Auto Range</li> <li>Clip to Range</li> <li>Draw Profiles</li> <li>Draw Mesh</li> </ul> |          | •             | rface list. |       | In multiph<br>problems,<br>contours of<br>fraction to<br>correct init<br>condition<br>beginning<br>highly reco | disp<br>of vo<br>con<br>itial<br>befo<br>to it | lume<br>firm the<br>re<br>erate is | Rias | 1000000<br>9,550-01<br>9,000-01<br>8,500-01<br>7,500-01<br>7,500-01<br>7,000-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-01<br>9,500-000-000000000000000000000000000000 |         | (Time=0.0000e+00)<br>WSYS Fluent 14.5 (3d, c |           | R14.5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|-----------|-------|
| Introduction                                                                                                                                                                                              | <u> </u> | ic Setup      | Pre         | barir | ng to Solve                                                                                                    | $\mathbf{>}$                                   | Solving                            |      | PostPr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ocessin | g 🔪 Sum                                      | imary     | >     |
| © 2012 ANSYS, Inc                                                                                                                                                                                         | :. Sej   | otember 19, 2 | 013         |       | 21                                                                                                             |                                                |                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Rele                                         | ease 14.5 | ;     |

•





2: Contours of Volume fract -

# **ANSYS** Initialize Display Settings [2]

You can change the colour map used for plotting images. We will change from Blue–Green–Red to a Grayscale scheme.

- Choose Colormap.
  - Set Colormap size to 10.
  - Choose the gray Scheme.
  - Apply.





September 19, 2013

Summarv

# **ANSYS** Define Calculation Activities [1]

In this step you will define activities that Fluent will perform during the calculation. These activities are as follows:

- To autosave case and data files.
- To turn off the supply of water after t = 1 second. (Mass flow rate boundary condition will be changed to zero).

#### Set autosave options.

Select Calculation Activities in the outline tree.

- Click Edit... next to Autosave.
  - Set Autosave Every (Time Steps) to 25.
  - [If running Fluent standalone, rather than under workbench]
     In the panel that opens, enter the file name tank–flush.gz.
  - [If running under workbench] No action needed.
  - Retain the defaults for all other settings and click OK.

| Autosave X                                                                  |  |  |  |  |
|-----------------------------------------------------------------------------|--|--|--|--|
| Save Data File Every (Time Steps) 25                                        |  |  |  |  |
| Data File Quantities                                                        |  |  |  |  |
| Save Associated Case Files                                                  |  |  |  |  |
| <ul> <li>Only if Modified</li> <li>Each Time</li> </ul>                     |  |  |  |  |
| File Storage Options                                                        |  |  |  |  |
| Retain Only the Most Recent Files                                           |  |  |  |  |
| Maximum Number of Data Files 0 V<br>Only Associated Case Files are Retained |  |  |  |  |
| File Name                                                                   |  |  |  |  |
| tank-flush.gz Browse                                                        |  |  |  |  |
| Append File Name with time-step                                             |  |  |  |  |
| OK Cancel Help                                                              |  |  |  |  |

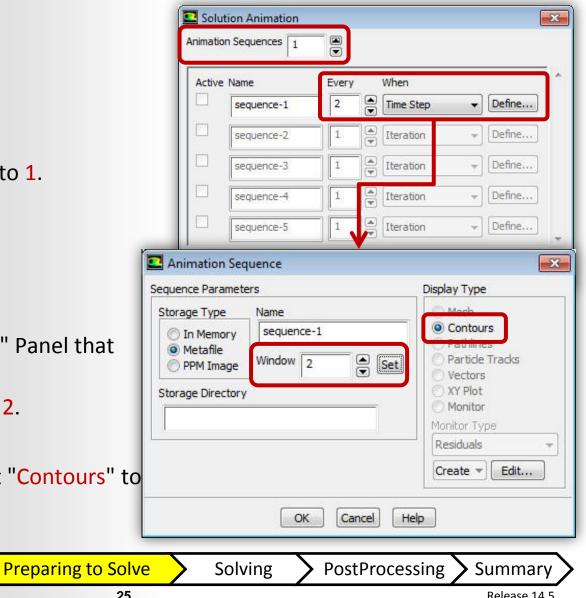


### **ANSYS** Define Calculation Activities [2]

#### Define a command to modify the boundary condition after 1 second:

In the Centre Pane, under Execute Commands.

- Click Create/Edit.
  - In the Panel that opens, set Defined Commands to 1.
  - Check Active next to the command line.
  - Enter the following command to be executed. Please make sure the spelling is exactly as written as below, take special care with the hyphens "-": define boundary-conditions mass-flow-inlet inlet water yes no 0


| -                                                                                              | Execute Commands                                                                                                                                                                                                                                                                               |                         |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| <ul> <li>Set "Every" to 100.</li> <li>Set "When" to "Time Step".</li> <li>Click OK.</li> </ul> | Defined Commands 1<br>Active Name Every When Command<br>command-1 100 Time Step define boundary-conditions mass-flow-inlet inlet water yes no 0<br>command-2 1 Iteration<br>define boundary-conditions mass-flow-inlet inlet water yes<br>command-5 1 Iteration<br>OK Define Macro Cancel Help | s no 0                  |
| Introduction > Basic Setup > Pre                                                               | eparing to Solve Solving Solving Summary                                                                                                                                                                                                                                                       | $\overline{\mathbf{y}}$ |
| © 2012 ANSYS, Inc. September 19, 2013                                                          | 24 Release 14.                                                                                                                                                                                                                                                                                 | .5                      |

#### **Define Animation Solution** [1] **ANSYS**<sup>®</sup>

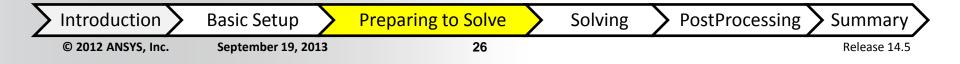
#### Set the Animation Sequence.

#### Calculation Activities>Solution Animations>Create/Edit.

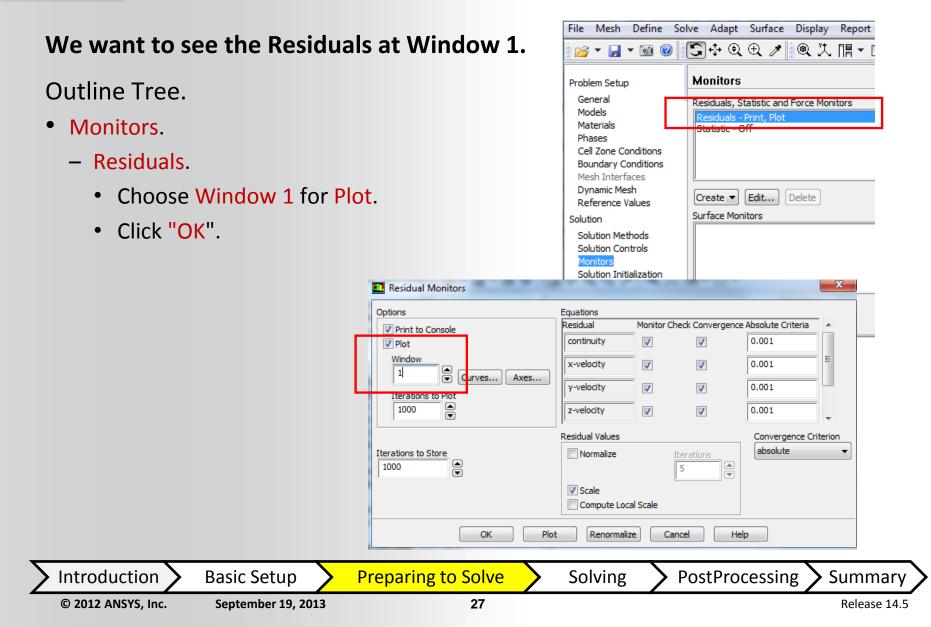
- In the Panel that opens.
  - Set "Animation Sequences" to 1.
  - Set "Every" to 2.
  - Set "When" to "Time Step".
  - Click "Define".
  - In the "Animation Sequence" Panel that opens.
    - Set "Window" number to 2.
    - Click "Set". •
    - Under Display Type select "Contours" to • open the contours panel.



Introduction


**Basic Setup** 

### **ANSYS** Define Animation Solution [2]


#### Set the animation sequence cont ...

- In the Contours panel select "Filled" under "Options".
- Under "Contours of" select "Phases..." and choose "air" for the "Phase" to be displayed.
- Under "Surfaces" select "sym1" zone.
- Click "Display" and close the panel.
- Close remaining panels by clicking "OK".

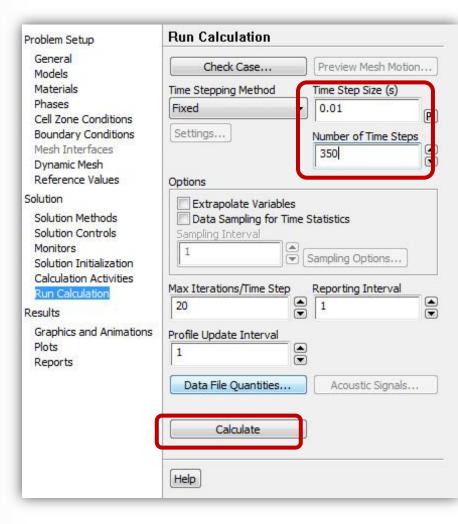
| Contours                                                                                                  |                                                                          | <b>_</b> |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Options<br>Filled<br>Options<br>Global Range<br>Auto Range<br>Clip to Range<br>Draw Profiles<br>Draw Mesh | Contours of Phases Volume fraction Phase air IMIN Max 0 1                | •        |
| Levels Setup<br>10  1<br>Surface Name Pattern<br>Match                                                    | outlet<br>sym1<br>sym2                                                   |          |
|                                                                                                           | New Surface ▼<br>Surface Types<br>axis<br>dip-surf<br>exhaust-fan<br>fan |          |
| Display                                                                                                   | Compute Close Help                                                       | ]        |

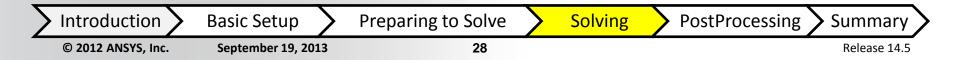


### **ANSYS** Define Residual Monitor

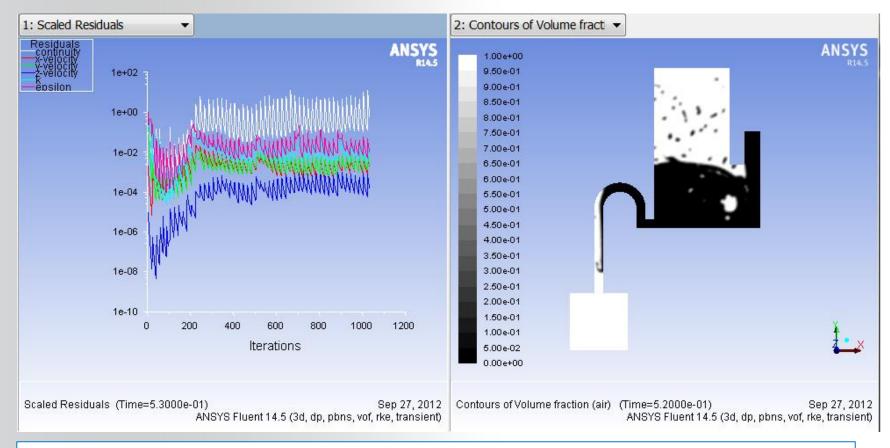


### **ANSYS** Run the Calculation [1]

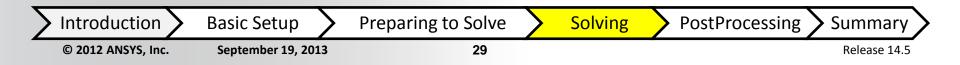

# Before run the calculation, you should save the case and data files.


- Use the Save toolbar button to write case and data files as "tank–flush–init.cas.gz".
- If running Fluent within ANSYS Workbench, Select Save Project.

Select Run Calculation from the Outline Tree.


- Enter 0.01 s for Time Step Size.
- Enter 350 under Number of Time Steps.
- Click Calculate.

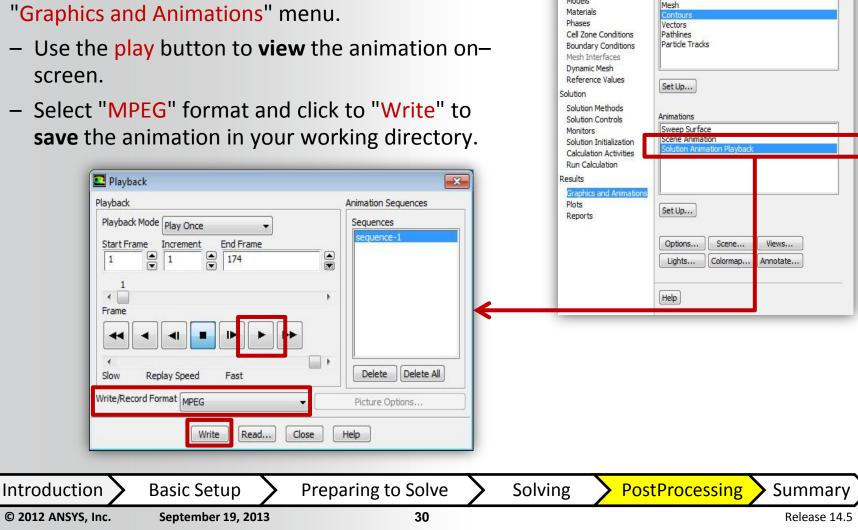
The solution will require approximately half an hour to compute. You can choose to run all of the calculations or stop the iterations, read final data file or check the provided animation.






### **ANSYS** Run the Calculation [2]




This is a snapshot of the graphics windows after the completion of the first 53 time steps.



#### **PostProcess Results** [1] **ANSYS**®

#### **Generate Animation**

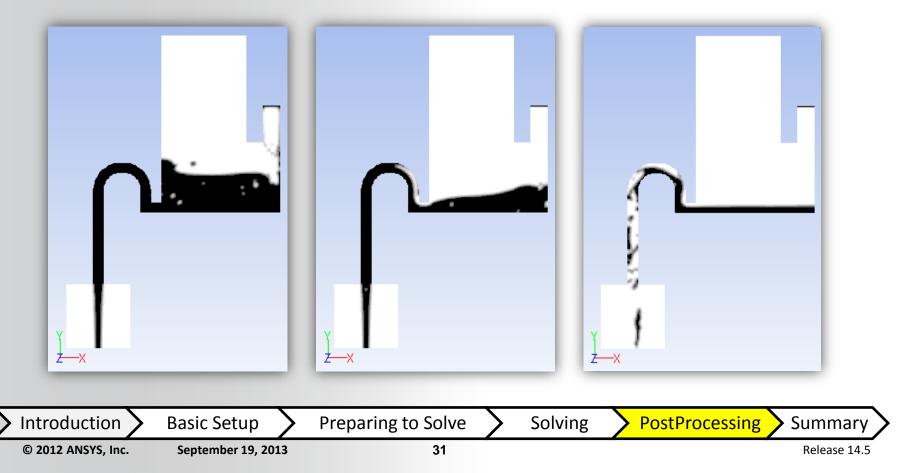
- Select "Solution Animation Playback" from the "Graphics and Animations" menu.
  - Use the play button to view the animation onscreen.
  - Select "MPFG" format and click to "Write" to **save** the animation in your working directory.



Graphics and Animations

Graphics

Problem Setup


General

Models

### **ANSYS PostProcess Results** [2]

The animation can be played using most of the standard multimedia Players like **Windows Media Player**.

The "Animation Playback" tool can also be used to generate a sequence of picture frames.



### **ANSYS** Further Work

There are many ways the simulation in this tutorial could be extended for instance reloading the saved initial case and data files and then try:

- Switch to Different Discretization Schemes for Volume Fraction.
  - Compressive or Modifed HRIC.
- Modify the Time Step size.

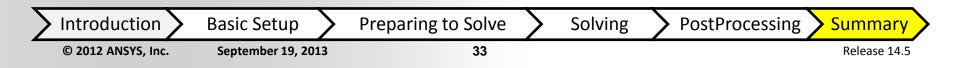
© 20

- Reduce the Time Step Size by Factor 2 or 5.
- Use Variable Time Stepping to ensure that the time step size corresponds to a predetermined value for the Courant Number in the region of the phase interface.

| File Mesh Define                                         |                                                                                                  | Variable Time Step Settings      |                                             |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|
| i 📂 🕶 🔛 👻 🎯 🥝                                            | [\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                       | Global Courant Number 2          | Courant Number of 2                         |
| Problem Setup<br>General                                 | Run Calculation                                                                                  | Ending Time (s) 4                | means the Phase                             |
| Models<br>Materials                                      | Check Case         Preview Mesh Motion           Time Stepping Method         Time Step Size (s) | Minimum Time Step Size (s) 1e-05 | Interphase is passing<br>only two Cells per |
| Phases<br>Cell Zone Conditions<br>Boundary Conditions    | Fixed   O.01  Settings                                                                           | Maximum Time Step Size (s) 1     | Time Step.                                  |
| Mesh Interfaces<br>Dynamic Mesh                          | Settings Number of Time Steps                                                                    | Minimum Step Change Factor 0,5   | Time Step.                                  |
| Reference Values                                         | Options                                                                                          | Maximum Step Change Factor 1.5   |                                             |
| Solution<br>Solution Methods                             | Extrapolate Variables     Data Sampling for Time Statistics                                      | Number of Fixed Time Steps 1     |                                             |
| Solution Controls<br>Monitors<br>Solution Initialization | Sampling Interval                                                                                | User-Defined Time Step none      |                                             |
| Calculation Activities<br>Run Calculation                | Time Sampled (s)                                                                                 | OK Cancel Help                   |                                             |
| oduction                                                 | Basic Setup > Preparing to                                                                       | Solve 🔪 Solving 🔪 I              | PostProcessing Summary                      |
| 12 ANSYS, Inc.                                           | September 19, 2013                                                                               | 32                               | Release 14.5                                |

### ANSYS<sup>®</sup> Wrap–Up

This workshop has shown the basic steps that are applied in VOF simulations:


- Setup Phase and Interaction.
- Setting boundary conditions per Phase and Solver Settings.
- Running a transient simulation whilst write data and animation data.
- Postprocessing the results.

One of the important things to remember in your own work is, before even starting the ANSYS software, is to think WHY you are performing the simulation:

- What information are you looking for.
- What do you know about the inlet conditions.

In this case we were interested in the how long it would take to completely empty the tank.

Knowing your aims from the start will help you make sensible decisions of how much of the part to simulate, the level of mesh refinement needed, and which numerical schemes should be selected.

