
“KAVERI” AND THE HSA ADVANTAGE
TZACHI COHEN

FEBRUARY 10, 2014

2 | FEBRUARY 2014

SERIAL
WORKLOADS

PARALLEL
WORKLOADS

hUMA

APU
ACCELERATED PROCESSING UNIT

WHAT IS HSA?

Processor design that makes it easy
to harness the entire computing
power of an APU for faster and more
power-efficient devices, including
personal computers, tablets,
smartphones and cloud servers

3 | FEBRUARY 2014

HSA FEATURES OF "KAVERI"

ALL-PROCESSORS-EQUAL

 GPU and CPU have equal
flexibility to be used to create
and dispatch work items

EQUAL ACCESS TO ENTIRE MEMORY

 GPU and CPU have uniform
visibility into entire memory
space

hUMA

GPU CPU

 Access to full potential of
Kaveri’s APU compute power

UNLOCKING All OF KAVERI’S GFLOPS

APU GFLOPS

CPU GFLOPS

GPU GFLOPS

hQ

GPU 118.4

737.3

CPU

4 | PRACE | FEBRUARY 2014

OPENCL™ 2.0 FEATURES AND HSA

 Some of the key features of OpenCL 2.0 and their HSA mapping

 OpenCL 2.0 Feature HSA Mapping

Shared Virtual Memory hUMA

Dynamic Parallelism hQ

Pipes hUMA, hQ

C11 Atomics Platform Atomics

5 | PRACE | FEBRUARY 2014

HSA ADVANTAGES OF "KAVERI"

 HSA features make "Kaveri" the FIRST full OpenCL 2.0 capable chip

 Ease of programming to use the GPU for compute

 Easy access to up to 12 Compute Cores*

 More applications from ease of use

 Better user experiences

*for more information on Compute Cores please visit AMD.com/computecores

6 | FEBRUARY 2014

USE CASES SHOWING HSA ADVANTAGE

Programming
Technique

Use Case Description HSA Advantage

Data Pointers
Binary tree searches
GPU performs searches in a CPU created binary tree

GPU can access existing data structures containing pointers
Higher performance through parallel operations

Platform Atomics
Binary tree updates
CPU and GPU operating simultaneously on the tree, both
doing modifications

CPU and GPU can synchronize using Platform Atomics
Higher performance through parallel operations

Large Data Sets
Hierarchical data searches
Applications include object recognition, collision detection,
global illumination, BVH

GPU can operate on huge models in place
Higher performance through parallel operations

CPU Callbacks
Middleware user-callbacks
GPU processes work items, some of which require a call to
a CPU function to fetch new data

GPU can invoke CPU functions from within a GPU kernel
Simpler programming does not require “split kernels”
Higher performance through parallel operations

Data Pointers

8 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

9 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

L R

L R

L R

10 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

L R

L R

L R

11 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

L R

L R

L R

12 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

L R

L R

L R

13 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

14 | PRACE | FEBRUARY 2014

DATA POINTERS

Legacy

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

GPU MEMORY

RESULT BUFFER FLAT TREE

15 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

KERNEL

GPU

DATA POINTERS

HSA and full OpenCL 2.0

TREE RESULT
BUFFER

L R

L R L R

16 | PRACE | FEBRUARY 2014

DATA POINTERS

HSA

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

17 | PRACE | FEBRUARY 2014

DATA POINTERS

HSA

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

18 | PRACE | FEBRUARY 2014

DATA POINTERS

HSA

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

19 | PRACE | FEBRUARY 2014

DATA POINTERS

HSA

SYSTEM MEMORY

KERNEL

GPU

TREE RESULT
BUFFER

L R

L R L R

20 | PRACE | FEBRUARY 2014

DATA POINTERS - CODE COMPLEXITY

HSA Legacy

21 | PRACE | FEBRUARY 2014

DATA POINTERS - PERFORMANCE

0

10,000

20,000

30,000

40,000

50,000

60,000

1M 5M 10M 25M

Se
ar

ch
 r

at
e

 (
 n

o
d

es
 /

 m
s

)

Tree size (# nodes)

Binary Tree Search

CPU (1 core)

CPU (4 core)

Legacy APU

HSA APU

Measured in AMD labs Jan 1-3 on system shown in back up slide

Platform
Atomics

23 | PRACE | FEBRUARY 2014

PLATFORM ATOMICS

Legacy

Only GPU
can work on

input array

Concurrent
processing

not possible

TREE INPUT
BUFFER

GPU

KERNEL

24 | PRACE | FEBRUARY 2014

PLATFORM ATOMICS

Legacy

Only GPU
can work on

input array

Concurrent
processing

not possible

TREE INPUT
BUFFER

GPU

KERNEL

25 | PRACE | FEBRUARY 2014

PLATFORM ATOMICS

Legacy

Only GPU
can work on

input array

Concurrent
processing

not possible

TREE INPUT
BUFFER

GPU

KERNEL

26 | PRACE | FEBRUARY 2014

GPU

KERNEL

PLATFORM ATOMICS

Both
CPU+GPU

operating on
same data

structure
concurrently

TREE INPUT
BUFFER

CPU 0

CPU 1

HSA and full OpenCL 2.0

27 | PRACE | FEBRUARY 2014

GPU

KERNEL

PLATFORM ATOMICS

Both
CPU+GPU

operating on
same data

structure
concurrently

TREE INPUT
BUFFER

CPU 0

CPU 1

HSA and full OpenCL 2.0

Large
Data Sets

29 | PRACE | FEBRUARY 2014

PROCESSING LARGE DATA SETS

The CPU creates a large data
structure in System Memory.
Computations using the data

are offloaded to the GPU.

SYSTEM MEMORY
GPU

30 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

Level 1 Level 2 Level 3 Level 4 Level 5 PROCESSING LARGE DATA SETS
La

rg
e

3D
 s

p
at

ia
l d

at
a

st
ru

ct
u

re

GPU

The CPU creates a large data
structure in System Memory.
Computations using the data

are offloaded to the GPU.

Compare HSA and
Legacy methods

31 | PRACE | FEBRUARY 2014

LARGE SPATIAL DATA STRUCTURE Level 1 Level 2 Level 3 Level 4 Level 5
La

rg
e

3D
 s

p
at

ia
l d

at
a

st
ru

ct
u

re

SYSTEM MEMORY

KERNEL

GPU
HSA and full OpenCL 2.0

32 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

GPU CAN TRAVERSE ENTIRE HIERARCHY Level 1 Level 2 Level 3 Level 4 Level 5

HSA

KERNEL

GPU

33 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

GPU CAN TRAVERSE ENTIRE HIERARCHY Level 1 Level 2 Level 3 Level 4 Level 5

HSA

KERNEL

GPU

34 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

GPU CAN TRAVERSE ENTIRE HIERARCHY Level 1 Level 2 Level 3 Level 4 Level 5

HSA

KERNEL

GPU

35 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

GPU CAN TRAVERSE ENTIRE HIERARCHY Level 1 Level 2 Level 3 Level 4 Level 5

HSA

KERNEL

GPU

36 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

GPU CAN TRAVERSE ENTIRE HIERARCHY Level 1 Level 2 Level 3 Level 4 Level 5

KERNEL

HSA
GPU

37 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

LEGACY ACCESS USING GPU MEMORY

Legacy

GPU Memory
is smaller

Have to copy and
process in chunks

GPU

GPU
MEMORY

38 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5 LEGACY ACCESS TO LARGE STRUCTURES
La

rg
e

3D
 s

p
at

ia
l d

at
a

st
ru

ct
u

re

GPU

GPU
MEMORY

39 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

COPY ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

Copy of top 2 levels of hierarchy

La
rg

e
3D

 s
p

at
ia

l d
at

a
st

ru
ct

u
re

GPU
MEMORY

40 | PRACE | FEBRUARY 2014

GPU

GPU
MEMORY

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

FIRST
KERNEL

41 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

GPU
MEMORY

FIRST
KERNEL

42 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

GPU
MEMORY

FIRST
KERNEL

43 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

COPY ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

GPU
MEMORY

44 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

COPY ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

Copy of bottom 3 levels of one
branch of the hierarchy

GPU
MEMORY

45 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

GPU
MEMORY

SECOND
KERNEL

46 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

GPU
MEMORY

SECOND
KERNEL

47 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

GPU
MEMORY

SECOND
KERNEL

48 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

COPY ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

GPU
MEMORY

49 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

COPY ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

GPU
MEMORY

50 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

COPY ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

Copy of bottom 3 levels of a
different branch of the hierarchy

GPU
MEMORY

51 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

GPU
MEMORY

Nth
KERNEL

52 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

GPU
MEMORY

Nth
KERNEL

53 | PRACE | FEBRUARY 2014

SYSTEM MEMORY

PROCESS ONE CHUNK AT A TIME

Legacy

Level 1 Level 2 Level 3 Level 4 Level 5

GPU

KERNEL

GPU
MEMORY

Nth
KERNEL

Callbacks

55 | PRACE | FEBRUARY 2014

CALLBACKS

 Parallel processing algorithm with branches

 A seldom taken branch requires new data from the CPU

 On legacy systems, the algorithm must be split:

‒ Process Kernel 1 on GPU

‒ Check for CPU callbacks and if any, process on CPU

‒ Process Kernel 2 on GPU

 Example algorithm from Image Processing

‒ Perform a filter

‒ Calculate average LUMA in each tile

‒ Compare LUMA against threshold and call CPU callback if exceeded (rare)

‒ Perform special processing on tiles with callbackx\s

COMMON SITUATION IN HC

Input Image Output Image

56 | PRACE | FEBRUARY 2014

CALLBACKS

A few kernel threads
need CPU callback
services but serviced
immediately

G
P

U
 T

H
R

EA
D

S

0

1

2

N

.

.

.

.

.

.

.

.

.

CPU
callbacks

HSA and full OpenCL 2.0

57 | PRACE | FEBRUARY 2014

CALLBACKS

These diagrams are showing timelines. Time moves from left to right. In the non-HSA case, it would be nice to first show kernel 1,
start to end, then the CPU callbacks appear, then the kernel 2, start to end, appears. No animation is needed for the HSA case.
Unless you can make the lines start as nothing, and progressively get longer. I.e.: The left end of the line is at the "start" position,
and the right end of the line moves from "start" to "end" over time. If you can do this, then the CPU callbacks (red blocks) can
appear when the right end of the line passes their position.

Legacy
G

P
U

 T
H

R
EA

D
S

0

1

2

N

.

.

.

.

.

.

.

.

.

Continuation kernel
finishes up kernel works
results in poor GPU
utilization

58 | PRACE | FEBRUARY 2014

CALLBACKS

Input Image

1 Tile = 1 OpenCL Work Item

Output Image

GPU

• Work items compute average RGB value of all the pixels in a tile

• Work items also compute average Luma from the average RGB

• If average Luma > threshold, workgroup invokes CPU CALLBACK

• In parallel with callback, compute data used to saturate LUMA

CPU

• For selected tiles, update average Luma value (set to RED)

GPU

• Work items apply the Luma value to all pixels in the tile

 GPU to CPU callbacks use Shared Virtual
Memory (SVM) Semaphores, implemented
using Platform Atomic Compare-and-Swap.

59 | FEBRUARY 2014

AMD HETEROGENEOUS COMPUTING SOLUTIONS OVERVIEW

Unified SDKs
DEVELOPER TOOLS

PROGRAMMING LANGUAGES

OPTIMIZED LIBRARIES
Web Resources and Developer Forums

60 | FEBRUARY 2014

HSA ENABLEMENT OF JAVA

JAVA 8 – HSA ENABLED APARAPI

 Java 8 adds Stream, Lambda APIs
‒ CPU Multicore Parallelism

 APARAPI on HSA accelerates Lambdas
‒ Parallel acceleration on HSA APU

JVM

Java Application

HSAIL

 HSA Finalizer
& Runtime

APARAPI + Lambda API

CPU ISA GPU ISA

GPU CPU

JAVA 7 – OpenCL™ ENABLED APARAPI

 AMD initiated Open Source project

 Program only in Java
‒ Accelerated by OpenCL™

 Active community captured mindshare

JVM

Java Application

OpenCL™

OpenCL™ Compiler
& Runtime

APARAPI API

CPU ISA GPU ISA

GPU CPU

JAVA 9 – HSA ENABLED JAVA (SUMATRA)

 Adds native APU acceleration to Java
Virtual Machine (JVM)

 Developer uses Lambda, Stream API

 JVM generates HSAIL automatically

JVM

Java Application

HSAIL

 HSA Finalizer
& Runtime

Java JDK Stream + Lambda API

Java GRAAL JIT
 backend

CPU ISA GPU ISA

GPU CPU

61 | PRACE | FEBRUARY 2014

APP SDK 2.9

 Web-based sample browser

 Supports programming standards: OpenCL™, C++ AMP

 Code samples for accelerated open source libraries:
‒ OpenCV, OpenNI, Bolt, Aparapi

 OpenCL™ source editing plug-in for visual studio

 Now supports Cmake

AMD’S UNIFIED SDK

 Access to AMD APU and GPU programmable components

 Component installer - choose just what you need

 Initial release includes:

 APP SDK v2.9

 Media SDK 1.0

AMD Unified SDK

MEDIA SDK 1.0

 GPU accelerated video pre/post processing library

 Leverage AMD's media encode/decode acceleration blocks

 Library for low latency video encoding

 Supports both Windows Store and Classic desktop

62 | PRACE | FEBRUARY 2014

AMD V1.3

 AMD’s comprehensive heterogeneous
developer tool suite including:

‒ CPU and GPU Profiling

‒ GPU kernel Debugging

‒ GPU kernel analysis

 New features in version 1.3:

‒ Supports Java, the world’s most popular
programming language

‒ Integrated static kernel analysis

‒ Remote debugging/profiling

‒ Supports latest AMD APU and GPU products

CPU PROFILER

 Time-based profiling

 Analyze call-chain relationships

 Java profiling with inline
function support

 Cache-line utilization profiling

 Supports latest AMD processors

GPU PROFILER

 OpenCL Application Trace

 Profile OpenCL kernels

 Timeline visualization of GPU
counter data

 Kernel Occupancy Viewer

 Remote GPU Profiling

GPU DEBUGGER

 Real-time OpenCL kernel
debugging with stepping and
variable display

 OpenCL and OpenGL API
Statistics

 Object visualization

 Remote GPU debugging

STATIC KERNEL ANALYZER

 Compile, analyze and
disassemble OpenCL Kernels

 View kernel compilation
errors/warnings

 Estimate kernel performance

 View generated ISA code

 View registers

63 | PRACE | FEBRUARY 2014

ACCELERATED OPEN SOURCE LIBRARIES

OpenCV

 Most popular computer
vision library

 Now with many OpenCL™
accelerated functions

Bolt

 C++ template library

 Provides GPU off-load for
common data-parallel
algorithms

 Now with cross-OS support
and improved
performance/functionality

clMath

 AMD released APPML as
open source to create
clMath

 Accelerated BLAS and FFT
libraries

 Accessible from Fortran, C
and C++

Aparapi

 OpenCL accelerated Java 7

 Java APIs for data parallel
algorithms (no need to
learn OpenCL)

64 | PRACE | FEBRUARY 2014

"KAVERI" AND HSA HAVE ARRIVED
THE REVOLUTION HAS STARTED!

65 | PRACE | FEBRUARY 2014

Questions?

66 | PRACE | FEBRUARY 2014

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and
motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like.
AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.

OpenCL™ is a trademark of Apple Inc. which is licensed to the Khronos organization. Linux™ is the trademark of Linus Torvalds. Microsoft™ and Windows™ are the

trademarks of Microsoft Corp. All other names used in this presentation are for informational purposes only and may be trademarks of their respective owners.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS
THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States
and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Backup

68 | PRACE | FEBRUARY 2014

MICRO-BENCHMARK SYSTEM CONFIGURATION

Details AMD “Kaveri” APU

Operating System Microsoft® Windows 8.1® (64-bit)
Single Language

Processor "Kaveri" A10 – 95W
AMD Engineering Sample
ZD376091I4468_40/37/18/07_130F

CPU speed (base/boost) 3.7 GHz / 4.0 GHz

GPU speed 720 MHz

Memory 2x4GB DDR3-1600

Disk HDD

Video Driver 13.35 / HSA Beta 2.2

Test Dates January 1-3, 2014

