“KAVERI” AND THE HSA ADVANTAGE 4

TZACHI COHEN
FEBRUARY 10, 2014

WHAT IS HSA?

GPU

2 .
-
#
. Doma * e
- 3
» . - - ¢
o

PARALL
WOR

AMD

L 1] .Val\
ST \

ACCELERATED PROCESSING UNIT

2 | FEBRUARY 2014

HSA FEATURES OF "KAVERI"

— GPU GFLOPS

APU GFLOPS
A Access to full potential of A GPU and CPU have uniform A4 GPU and CPU have equal
Kaveri’s APU compute power visibility into entire memory flexibility to be used to create

space and dispatch work items

3 | FEBRUARY 2014

OPENCL™ 2.0 FEATURES AND HSA AMD 1

A Some of the key features of OpenCL 2.0 and their HSA mapping

OpenCL 2.0 Feature HSA Mapping
Shared Virtual Memory hUMA

Dynamic Parallelism Q

Pipes hUMA, hQ

C11 Atomics Platform Atomics

4 | PRACE| FEBRUARY 2014

HSA ADVANTAGES OF "KAVERI" AMDZ1

A HSA features make "Kaveri" the FIRST full OpenCL 2.0 capable chip
A Ease of programming to use the GPU for compute
A Easy access to up to 12 Compute Cores*
4 More applications from ease of use

A Better user experiences

5 | PRACE| FEBRUARY 2014 for more information on Compute Cores please visit AMD.com/computecores

USE CASES SHOWING HSA ADVANTAGE

Programming
Technique

Use Case Description

HSA Advantage

Data Pointers

Platform Atomics

Large Data Sets

CPU Callbacks

Binary tree searches
GPU performs searches in a CPU created binary tree

Binary tree updates
CPU and GPU operating simultaneously on the tree, both
doing modifications

Hierarchical data searches
Applications include object recognition, collision detection,
global illumination, BVH

Middleware user-callbacks
GPU processes work items, some of which require a call to
a CPU function to fetch new data

GPU can access existing data structures containing pointers
Higher performance through parallel operations

CPU and GPU can synchronize using Platform Atomics
Higher performance through parallel operations

GPU can operate on huge models in place
Higher performance through parallel operations

GPU can invoke CPU functions from within a GPU kernel
Simpler programming does not require “split kernels”
Higher performance through parallel operations

6 | FEBRUARY 2014

DATA POINTERS
Legacy

SYSTEM MEMORY

GPU

KERNEL

TREE

RESULT
BUFFER

8 | PRACE| FEBRUARY 2014

GPU MEMORY

FLAT TREE RESULT BUFFER

AMDZ\

DATA POINTERS AMDA
Legacy

GPU

SYSTEM MEMORY

KERNEL

GPU MEMORY

Eﬂi
l

TREE RESULT 1
BUFFER |-

FLAT TREE RESULT BUFFER

9 | PRACE| FEBRUARY 2014

DATA POINTERS
Legacy

SYSTEM MEMORY

GPU

KERNEL

GPU MEMORY

TREE

RESULT
BUFFER

10 | PRACE| FEBRUARY 2014

FLAT TREE RESULT BUFFER

AMDZ\

DATA POINTERS
Legacy

SYSTEM MEMORY

GPU

KERNEL

GPU MEMORY

TREE

RESULT
BUFFER

11 | PRACE| FEBRUARY 2014

FLAT TREE RESULT BUFFER

AMDZ\

DATA POINTERS
Legacy

SYSTEM MEMORY

GPU

KERNEL

TREE

RESULT
BUFFER

GPU MEMORY

12 | PRACE| FEBRUARY 2014

FLAT TREE RESULT BUFFER

AMDZ\

DATA POINTERS
Legacy

SYSTEM MEMORY

GPU

KERNEL

AMDZ\

TREE

RESULT
BUFFER

13 | PRACE| FEBRUARY 2014

GPU MEMORY

FLAT TREE RESULT BUFFER

DATA POINTERS
Legacy

SYSTEM MEMORY

GPU

KERNEL

TREE

RESULT
BUFFER

14 | PRACE| FEBRUARY 2014

GPU MEMORY

FLAT TREE RESULT BUFFER

AMDZ\

DATA POINTERS AMDZ1

SYSTEM MEMORY

GPU

KERNEL

TREE RESULT
BUFFER

15 | PRACE| FEBRUARY 2014

DATA POINTERS AMDZ1

SYSTEM MEMORY

GPU

KERNEL

W

TREE RESULT
BUFFER

16 | PRACE| FEBRUARY 2014

DATA POINTERS AMDZ1

SYSTEM MEMORY

GPU

KERNEL

W

TREE RESULT
BUFFER

17 | PRACE| FEBRUARY 2014

DATA POINTERS AMDZ1

SYSTEM MEMORY

GPU

KERNEL

W

TREE RESULT
BUFFER

18 | PRACE| FEBRUARY 2014

DATA POINTERS AMDZ1

SYSTEM MEMORY

GPU

KERNEL

TREE RESULT
BUFFER

19 | PRACE| FEBRUARY 2014

static void run_ocl_path(}
{
#* Allpcation and initialization */
tree = (node *} mal nodes * sizeof(node}});
initialize nodes(tree, nodes);
root = conEtruct BST{num rodes tree);

search _keys = (int *) malloc{num_search_keys * sizeof(int});
- initialize search keys(search keys, num_search keys, sort_input): ‘

found keys = (int *} malloc{num search keys * sizeof({int}};
memset({found keys, 0, num_search _keys * sizeof(int)};
ocl tree = (ocl node *) malloc{num nodes * sizecf{ocl node});

el mem el ocl tree = clCreateBuiffer|context, CL MEM READ ONLY,
num_nodes * sizeof(ocl node), s &Status});

cl mem el_search _keys = clCreateBuffer(context, CL_MEM READ_ONLY,
num_search keys * sizeof(int), + &Btatus);

el mem cl_found nodes_id = clCreateBuffer(context, CL_MEM WRITE_ONLY,
num_search_keys * sizeof(int), s &Btatus});
/T is converted to its array form */

initialize oecl nodes{ocl_tree, num_nodes
convert_tree to_array{root, ocl_tree, &rooL idy;

#* Copy the tree and search keys array to the GPU */
clEngueueWriteBuffer(queue, cl_ocl_tree, CL_TRUE,
num_nodes * sizeof(ocl node), ocl tree, o, . b

clEngueveWriteBuffer(gueve, cl_search_keys, CL_TRUE,
num_search_keys * sizeof(int), search_keys, 0, ' i

static void run_hsa path() /+ GPU work enqueus +/
- clSetKernelArg{search_kernel, 0, sizeof(cl_ocl tree}, &Lcl _ocl tree};
{ clSetKernelArg(search_kernel, 1, sizeof{cl_int), &root_id};
. e e . . . clSetkernelhrg{search kernel, 2, sizeof{cl search keys}, kcl search keys);
/* Al loca tlon and ini tlall zZa tlon */ clsetKernelhrg{search kernel, 3, sizeof(cl_int), &num search keys);
clSetKernelArg{search_kernel, 4, sizeof({cl_found nodes id), &cl_found nodes_id);

tree = (node ¥*) clSVMJ_&lloc{context, CL_MEM_READ ONLY, clsnqueseNDRangeKernel (quese, search kernel, |, “ii,
num nodes * Slzeof(node) ’); B cnum_search keys, spreferredlocalsize, 0, . 5

initialize nodes(tree, num nodes); s e

root = construct BST(num nodes, tree); clengueusResdnetfer (qucue, cl found nodes id, CL TRUE,

num_search keys * slzeolluth found keys, 0, ¥ bi

. A* Cleanup */
search keys = (int *) clSVMAlloc(context, CL_MEM READ ONLY, frea(on] tree);

num search keys * sizeof(int), 0); fros(soarch riye):
initialize search keys(search keys, num search keys, sort input); clieleasemennbiect (el ocl_tree);

clReleaseMemObject{cl_search _keys);
clreleaseMemObject {cl_found nodes_id});

found key nodes = (node **) clSVMAlloc(context, CL_MEM WRITE ONLY,
num Search keys * Sizeof (node *) r) ; static void initialize ocl_nodes{ocl_node *ocl tree, long leng int num_nodes)
3 by . i
memset (found key nodes, 0, num search keys * sizeof(node *)); for (int i = 0; i < num nodes; i++) {

ocl treefi]. letr o=
ocl_tree[i].right = - .'

}
/* GPU work enqueue */ }

CISetKernelArgSVMPOinter(searChikernel’ rOOt) ; static void convert tree to_array(node *root, ocl node *ocl tree, int *root_id)
clSetKernelArgSVMPointer(search kernel, search keys); e —— . .
clSetKernelArgSVMPointer(search kernel, &num_search keys); node *tmp;
clSetKernelArgSVMPointer(search kernel, found key nodes); tree_gueue = {node vrjcalloc{num podes, sizeaf(nade *));

long long int front =
long lomg int rear =

clEnqueueNDRangeKernel (queue, search_ kernel, 1, ;gfeLg;:ﬂiegi?f‘laL?fme svatee:
&num search keys, &preferredLocalSize, , &kernel event);
*root_id =
clFinish(queue); g e it shont;
break;

i ~>lef
/* Cleanup */ e aneusisar] = tmp->lefe;

clSVMFree(context, tree); Sol-reetieondiTiats o (oa v
clSVMFree (context, found key nodes); po
clSVMFree(context, search keys); it (tmp-sright) { .

- tree gueue[rear] = tmp->right;
ocl_tree[rear].value = tmp->right->value;
ocl_tree[front].right = (int)rear;
rear++;

13
front++;

}

20 | PRACE| FEBRUARY 2014 e ey

DATA POINTERS - PERFORMANCE AMDZ1

Binary Tree Search

60,000

50,000
~~ 40,000
€
~
(7]
]
'g
c 30,000 = CPU (1 core)
9 ' E CPU (4 core)
e = Legacy APU
<
% = HSA APU
& 20,000

10,000

0

1M Y 10M 25M
Tree size (# nodes)

21 | PRACE| FEBRUARY 2014 Measured in AMD labs Jan 1-3 on system shown in back up slide

PLATFORM ATOMICS
Legacy

Only GPU
can work on
input array

Concurrent
processing
not possible

0

GPU

KERNEL

INPUT
BUFFER

23 | PRACE| FEBRUARY 2014

AMDZ\

TREE

PLATFORM ATOMICS
Legacy

Only GPU
can work on
input array

Concurrent
processing
not possible

1

INPUT
BUFFER

24 | PRACE| FEBRUARY 2014

»

GPU

KERNEL

I
g _

AMDZ\

TREE

PLATFORM ATOMICS

Legacy

Only GPU
can work on
input array

Concurrent
processing
not possible

25 | PRACE| FEBRUARY 2014

1L

INPUT
BUFFER

»

GPU

KERNEL

I
g _

AMDZ\

TREE

PLATFORM ATOMICS

Both
CPU+GPU
operating on
same data
structure
concurrently

GPU

KERNEL

CPUO

INPUT
BUFFER

26 | PRACE| FEBRUARY 2014

CPU 1

AMDZ\

TREE

PLATFORM ATOMICS AMDZ1

} GPU

KERNEL
BOth —— ¢
CPU+GPU
operating on |}
same data |
structure CPUO
concurrently —| [»

¥ || |}
® ®

INPUT TREE
BUFFER

\
:

27 | PRACE| FEBRUARY 2014

PROCESSING LARGE DATA SETS

AMDZ\

SYSTEM MEMORY

GPU

29 | PRACE| FEBRUARY 2014

The CPU creates a large data
structure in System Memory.
Computations using the data

are offloaded to the GPU.

PROCESSING LARGE DATA SETS ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH

GPU

SYSTEM MEMORY

~

The CPU creates a large data
structure in System Memory.
Computations using the data

are offloaded to the GPU.

Large 3D spatial data structure

<

Compare HSA and
Legacy methods

30 | PRACE| FEBRUARY 2014

LARGE SPATIAL DATA STRUCTU RE ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH

GPU

SYSTEM MEMORY

KERNEL

/
S
\
\

AN

Large 3D spatial data structure

<

31 | PRACE| FEBRUARY 2014

GPU CAN TRAVERSE ENTIRE HIERARCHY ®evels ®ievelz ®ievels B ievels @ eveis AMDEL

SYSTEM MEMORY

GPU

KERNEL

32 | PRACE| FEBRUARY 2014

GPU CAN TRAVERSE ENTIRE HIERARCHY

® cell ® ez ®evels ® levels ® Levels AMDH

SYSTEM MEMORY

GPU

KERNEL

AN g

~_

33 | PRACE| FEBRUARY 2014

GPU CAN TRAVERSE ENTIRE HIERARCHY ®evels ®ievelz ®ievels B ievels @ eveis AMDEL

GPU

SYSTEM MEMORY

KERNEL

AN

<:i

34 | PRACE| FEBRUARY 2014

GPU CAN TRAVERSE ENTIRE HIERARCHY

® cell ® ez ®evels ® levels ® Levels AMDH

GPU

SYSTEM MEMORY

<>

KERNEL

\\\ NG /
.

35 | PRACE| FEBRUARY 2014

GPU CAN TRAVERSE ENTIRE HIERARCHY ®evels ®ievelz ®ievels B ievels @ eveis AMDEL

GPU

SYSTEM MEMORY

KERNEL

2

AN

N

<

36 | PRACE| FEBRUARY 2014

LEGACY ACCESS USING GPU MEMORY
Legacy

SYSTEM MEMORY

37 | PRACE| FEBRUARY 2014

GPU
GPU
MEMORY
GPU Memory
is smaller

Have to copy and
process in chunks

AMDZ\

LEGACY ACCESS TO LARGE STRUCTURES @ levelr ®ievel2 ®leveis W levels @ leveis AMD
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

Large 3D spatial data structure

38 | PRACE| FEBRUARY 2014

COPY ONE CHUNK ATATIME ® el ® ez ®evels ® levels ® Levels AMDH
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

Large 3D spatial data structure

L

/
<\

~

I I
Copy of top 2 levels of hierarchy

39 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

FIRST —

KERNEL

GPU
MEMORY

AN

/
<\{
\

4

40 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

FIRST —

KERNEL

GPU
MEMORY

AN

<<§

~

-
>
Y

41 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

FIRST

KERNEL

GPU

MEMORY ‘

<>

AN

/
<\{
\

4

%

\\\\\\

i

42 | PRACE| FEBRUARY 2014

COPY ONE CHUNK AT A TIME
Legacy

® cell ® ez ®evels ® levels ® Levels AMDH

GPU

SYSTEM MEMORY

<=

=

\\\\&/// P

GPU
MEMORY

43 | PRACE| FEBRUARY 2014

COPY ONE CHUNK ATATIME ® cell ® ez ®evels ® levels ® Levels AMDH
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

~Dgl

<

Copy of bottom 3 levels of one
branch of the hierarchy

44 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

SECOND

KERNEL

GPU
MEMORY

@ _

AN

<<§

45 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

SECOND
KERNEL

GPU
MEMORY

AN

<<§

46 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

SECOND
KERNEL

GPU
MEMORY

AN

<<§

47 | PRACE| FEBRUARY 2014

COPY ONE CHUNK AT A TIME
Legacy

® cell ® ez ®evels ® levels ® Levels AMDH

GPU

SYSTEM MEMORY

<=

=

\\\\&/// P

GPU
MEMORY

48 | PRACE| FEBRUARY 2014

COPY ONE CHUNK ATATIME ® cell ® ez ®evels ® levels ® Levels AMDH
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

AN

<<

49 | PRACE| FEBRUARY 2014

COPY ONE CHUNK ATATIME ® cell ® ez ®evels ® levels ® Levels AMDH
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

AN

/
\

~
NN

Copy of bottom 3 levels of a
different branch of the hierarchy

50 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

Nth

KERNEL

GPU
MEMORY

@ _

/
<\\
\

AN

<

51 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

/
<\\
\

AN

<

52 | PRACE| FEBRUARY 2014

PROCESS ONE CHUNK AT A TIME ® cvell ®evel2 ® level3 < Level4 @ Levels AMDH
Legacy

GPU

SYSTEM MEMORY

GPU
MEMORY

/
<\\
\

AN

<

53 | PRACE| FEBRUARY 2014

CALLBACKS AMDZ1
COMMON SITUATION IN HC

A Parallel processing algorithm with branches

A A seldom taken branch requires new data from the CPU

A

On legacy systems, the algorithm must be split:
— Process Kernel 1 on GPU

— Check for CPU callbacks and if any, process on CPU

— Process Kernel 2 on GPU

T rrrrrirT1Td

Frrrrrrrrrri

A Example algorithm from Image Processing
— Perform a filter
— Calculate average LUMA in each tile
— Compare LUMA against threshold and call CPU callback if exceeded (rare)
— Perform special processing on tiles with callbackx\s

Input Image Output Image

55 | PRACE| FEBRUARY 2014

AMDZ\

CALLBACKS

]

CPU
callbacks

GPU THREADS

A few kernel threads
need CPU callback
services but serviced
immediately

56 | PRACE| FEBRUARY 2014

CALLBACKS
Legacy

GPU THREADS

57 | PRACE| FEBRUARY 2014

AMDZ\

Continuation kernel
finishes up kernel works
results in poor GPU
utilization

CALLBACKS AMDZ1

GPU to CPU callbacks use Shared Virtual
Memory (SVM) Semaphores, implemented
using Platform Atomic Compare-and-Swap.

1 Tile = 1 OpenCL Work Item

»

Input Image Output Image

58 | PRACE| FEBRUARY 2014

AMD HETEROGENEOUS COMPUTING SOLUTIONS OVERVIEW

59 | FEBRUARY 2014

HSA ENABLEMENT OF JAVA

A4 AMD initiated Open Source project

A Program only in Java
— Accelerated by OpenCL™

A Active community captured mindshare

OpenCL™ Compiler
& Runtime

CPU ISA GPU ISA

60 | FEBRUARY 2014

4 Java 8 adds Stream, Lambda APIs
— CPU Multicore Parallelism

A APARAPI on HSA accelerates Lambdas
— Parallel acceleration on HSA APU

HSA Finalizer
& Runtime

CPU ISA GPU ISA

4 Adds native APU acceleration to Java
Virtual Machine (JVM)

A Developer uses Lambda, Stream API
A VM generates HSAIL automatically

HSA Finalizer
& Runtime

CPU ISA GPU ISA

AMD’S UNIFIED SDK AMDZ1

A Access to AMD APU and GPU programmable components
A4 Component installer - choose just what you need

A |nitial release includes:

4 APP SDKv2.9

4 Media SDK 1.0

AMD Unified SDK
Web-based sample browser A GPU accelerated video pre/post processing library
A Supports programming standards: OpenCL™, C++ AMP A leverage AMD's media encode/decode acceleration blocks
A Code samples for accelerated open source libraries: A Library for low latency video encoding

— OEme, el el Aperp A Supports both Windows Store and Classic desktop

A OpenCL™ source editing plug-in for visual studio

A Now supports Cmake

61 | PRACE| FEBRUARY 2014

AMD 0L XL V1.3

4 AMD’s comprehensive heterogeneous
developer tool suite including:

— CPU and GPU Profiling
— GPU kernel Debugging

— GPU kernel analysis

Time-based profiling

A

Analyze call-chain relationships

A Java profiling with inline
function support

A Cache-line utilization profiling

A Supports latest AMD processors

62 | PRACE| FEBRUARY 2014

A OpenCL Application Trace
Profile OpenCL kernels

Timeline visualization of GPU
counter data

Kernel Occupancy Viewer
Remote GPU Profiling

A New features in version 1.3:

AMDZ\

— Supports Java, the world’s most popular

programming language

— Integrated static kernel analysis

— Remote debugging/profiling
— Supports latest AMD APU and GPU products

Real-time OpenCL kernel
debugglng with stepping and
variable display

4 OpenCL and OpenGL API

Statistics

4 Object visualization
4 Remote GPU debugging

A

4 Compile, analyze and
disassemble OpenCL Kernels

View kernel compilation
errors/warnings

Estimate kernel performance
View generated ISA code

View registers

ACCELERATED OPEN SOURCE LIBRARIES

AMDZ\

A Most popular computer A C++ template library
vision library A Provides GPU off-load for

A4 Now with many OpenCL™ common data-parallel
accelerated functions algorithms

A Now with cross-OS support
and improved
performance/functionality

63 | PRACE| FEBRUARY 2014

A4 AMD released APPML as
open source to create
clMath

A Accelerated BLAS and FFT
libraries

A Accessible from Fortran, C
and C++

A OpenCL accelerated Java 7

A Java APIs for data parallel
algorithms (no need to
learn OpenCL)

"KAVERI" AND HSA HAVE ARRIVED
THE REVOLUTION HAS STARTED!

64 | PRACE| FEBRUARY 2014

AMDZ\

Questions?

DISCLAIMER & ATTRIBUTION AMDZ1

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and
motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like.
AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.

OpenCL™ is a trademark of Apple Inc. which is licensed to the Khronos organization. Linux™ is the trademark of Linus Torvalds. Microsoft™ and Windows™ are the
trademarks of Microsoft Corp. All other names used in this presentation are for informational purposes only and may be trademarks of their respective owners.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS
THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR
ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States
and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

66 | PRACE| FEBRUARY 2014

MICRO-BENCHMARK SYSTEM CONFIGURATION AMDZ1

Operating System Microsoft® Windows 8.1® (64-bit)
Single Language

Processor "Kaveri" A10 — 95W
AMD Engineering Sample
ZD37609114468 40/37/18/07 _130F

Test Dates January 1-3, 2014

68 | PRACE| FEBRUARY 2014

