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SERIAL 
WORKLOADS 

PARALLEL 
WORKLOADS 

hUMA 

APU 
ACCELERATED PROCESSING UNIT 

WHAT IS HSA? 

Processor design that makes it easy 
to harness the entire computing 
power of an APU for faster and more 
power-efficient  devices, including 
personal computers, tablets, 
smartphones and cloud servers 
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HSA FEATURES OF "KAVERI" 

ALL-PROCESSORS-EQUAL 

  GPU and CPU have equal 
flexibility to be used to create 
and dispatch work items 

EQUAL ACCESS TO ENTIRE MEMORY 

  GPU and CPU have uniform 
visibility into entire memory 
space 

hUMA 

GPU CPU 

  Access to full potential of 
Kaveri’s APU compute power 

UNLOCKING All OF KAVERI’S GFLOPS  

APU GFLOPS 

CPU GFLOPS 

GPU GFLOPS 

hQ 

GPU 118.4 

737.3 

CPU 
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OPENCL™ 2.0 FEATURES AND HSA 

 Some of the key features of OpenCL 2.0 and their HSA mapping 

 OpenCL 2.0 Feature HSA Mapping 

Shared Virtual Memory hUMA 

Dynamic Parallelism hQ 

Pipes hUMA, hQ 

C11 Atomics Platform Atomics 
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HSA ADVANTAGES OF "KAVERI" 

 HSA features make "Kaveri" the FIRST full OpenCL 2.0 capable chip 

 Ease of programming to use the GPU for compute 

 Easy access to up to 12 Compute Cores* 

 More applications from ease of use 

 Better user experiences 

 

*for more information on Compute Cores please visit AMD.com/computecores 
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USE CASES SHOWING HSA ADVANTAGE 

Programming 
Technique 

Use Case Description HSA Advantage 

Data Pointers 
Binary tree searches 
GPU performs searches in a CPU created binary tree 

GPU can access existing data structures containing pointers 
Higher performance through parallel operations 

Platform Atomics 
Binary tree updates 
CPU and GPU operating simultaneously on the tree, both 
doing modifications 

CPU and GPU can synchronize using Platform Atomics 
Higher performance through parallel operations 

Large Data Sets 
Hierarchical data searches 
Applications include object recognition, collision detection, 
global illumination, BVH 

GPU can operate on huge models in place 
Higher performance through parallel operations 

CPU Callbacks 
Middleware user-callbacks 
GPU processes work items, some of which require a call to 
a CPU function to fetch new data 

GPU can invoke CPU functions from within a GPU kernel 
Simpler programming does not require “split kernels” 
Higher performance through parallel operations 



Data Pointers 
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DATA POINTERS - CODE COMPLEXITY 

HSA Legacy 
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DATA POINTERS - PERFORMANCE 
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Measured in AMD labs Jan 1-3 on system shown in back up slide  
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PROCESSING LARGE DATA SETS 

The CPU creates a large data 
structure in System Memory.  
Computations using the data 

are offloaded to the GPU. 

SYSTEM MEMORY 
GPU 
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structure in System Memory.  
Computations using the data 

are offloaded to the GPU. 

Compare HSA and 
Legacy methods 
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SYSTEM MEMORY 

LEGACY ACCESS USING GPU MEMORY 

Legacy 
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CALLBACKS 

 Parallel processing algorithm with branches 

 A seldom taken branch requires new data from the CPU 

 On legacy systems, the algorithm must be split: 

‒ Process Kernel 1 on GPU 

‒ Check for CPU callbacks and if any, process on CPU 

‒ Process Kernel 2 on GPU 

 

 Example algorithm from Image Processing 

‒ Perform a filter 

‒ Calculate average LUMA in each tile 

‒ Compare LUMA against threshold and call CPU callback if exceeded (rare) 

‒ Perform special processing on tiles with callbackx\s 

 

 

COMMON SITUATION IN HC 

Input Image  Output Image  
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CALLBACKS 

A few kernel threads 
need CPU callback 
services but serviced 
immediately 
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HSA and full OpenCL 2.0 



57 |   PRACE |   FEBRUARY  2014  

CALLBACKS 

These diagrams are showing timelines.  Time moves from left to right.  In the non-HSA case, it would be nice to first show kernel 1, 
start to end, then the CPU callbacks appear, then the kernel 2, start to end, appears.   No animation is needed for the HSA case.   
Unless you can make the lines start as nothing, and progressively get longer.  I.e.:  The left end of the line is at the "start" position, 
and the right end of the line moves from "start" to "end" over time.  If you can do this, then the CPU callbacks (red blocks) can 
appear when the right end of the line passes their position.  
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finishes up kernel works  
results in poor GPU 
utilization 



58 |   PRACE |   FEBRUARY  2014  

CALLBACKS 

Input Image  

1 Tile  =  1 OpenCL Work Item 

Output Image  

GPU 

• Work items compute average RGB value of all the pixels in a tile  

• Work items also compute average Luma from the average RGB 

• If average Luma > threshold, workgroup invokes CPU CALLBACK 

• In parallel with callback, compute data used to saturate LUMA 

CPU  

• For selected tiles, update average Luma value  (set to RED) 

GPU 

• Work items apply the Luma value to all pixels in the tile 

 

   GPU to CPU callbacks use Shared Virtual 
Memory (SVM) Semaphores, implemented 
using Platform Atomic Compare-and-Swap. 
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AMD HETEROGENEOUS COMPUTING SOLUTIONS OVERVIEW 

Unified  SDKs 
DEVELOPER TOOLS 

PROGRAMMING LANGUAGES 

OPTIMIZED LIBRARIES 
Web Resources and Developer Forums 
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HSA ENABLEMENT OF JAVA 

JAVA 8 – HSA ENABLED APARAPI  

 Java 8 adds Stream, Lambda APIs 
‒ CPU Multicore Parallelism 

 APARAPI on HSA accelerates Lambdas 
‒ Parallel acceleration on HSA APU 

JVM 

 
Java Application 

 
 

HSAIL 

 HSA Finalizer  
& Runtime 

APARAPI + Lambda API 

CPU ISA GPU ISA 

GPU CPU 

JAVA 7 – OpenCL™ ENABLED APARAPI  

 AMD initiated Open Source project 

 Program only in Java 
‒ Accelerated by OpenCL™ 

 Active community captured mindshare 

JVM 

 
Java Application 

 
 

OpenCL™ 

OpenCL™ Compiler  
& Runtime 

APARAPI API 

CPU ISA GPU ISA 

GPU CPU 

JAVA 9 – HSA ENABLED JAVA (SUMATRA)  

 Adds native APU acceleration to Java 
Virtual Machine (JVM)  

 Developer uses Lambda, Stream API 

 JVM generates HSAIL automatically 

JVM 

 
Java Application 

 
 

HSAIL 

 HSA Finalizer  
& Runtime 

Java JDK Stream + Lambda API 

Java GRAAL JIT 
 backend 

CPU ISA GPU ISA 

GPU CPU 
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APP SDK 2.9 

 Web-based sample browser 

 Supports programming standards:  OpenCL™, C++ AMP 

 Code samples for accelerated open source libraries: 
‒ OpenCV, OpenNI, Bolt, Aparapi 

 OpenCL™ source editing plug-in for visual studio 

 Now supports Cmake 

AMD’S UNIFIED SDK 

 Access to AMD APU and GPU programmable components   

 Component installer - choose just what you need 

 Initial release includes: 

 APP SDK v2.9 

 Media SDK 1.0 

 
AMD Unified SDK 

MEDIA SDK 1.0 

 GPU accelerated video pre/post processing library 

 Leverage AMD's media encode/decode acceleration blocks  

 Library for low latency video encoding 

 Supports both Windows Store and Classic desktop  
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AMD                   V1.3 

 AMD’s comprehensive heterogeneous 
developer tool suite including: 

‒ CPU and GPU Profiling 

‒ GPU kernel Debugging 

‒ GPU kernel analysis 

 New features in version 1.3: 

‒ Supports Java, the world’s most popular 
programming language 

‒ Integrated static kernel analysis 

‒ Remote debugging/profiling  

‒ Supports latest AMD APU and GPU products 

 

CPU PROFILER 

 Time-based profiling 

 Analyze call-chain relationships 

 Java profiling with inline 
function support 

 Cache-line utilization profiling 

 Supports latest AMD processors 

 

GPU PROFILER 

 OpenCL Application Trace 

 Profile OpenCL kernels 

 Timeline visualization of GPU 
counter data 

 Kernel Occupancy Viewer 

 Remote GPU Profiling 

GPU DEBUGGER 

 Real-time OpenCL kernel 
debugging with stepping and 
variable display 

 OpenCL and OpenGL API 
Statistics 

 Object visualization 

 Remote GPU debugging 

STATIC KERNEL ANALYZER 

 Compile, analyze and 
disassemble OpenCL Kernels 

 View kernel compilation 
errors/warnings 

 Estimate kernel performance 

 View generated ISA code 

 View registers 
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ACCELERATED OPEN SOURCE LIBRARIES 

OpenCV 

 Most popular computer 
vision library  

 Now with many OpenCL™ 
accelerated functions 

Bolt 

 C++ template library  

 Provides GPU off-load for 
common data-parallel 
algorithms  

 Now with cross-OS support 
and improved 
performance/functionality 

clMath 

 AMD released APPML as 
open source to create 
clMath 

 Accelerated BLAS and FFT 
libraries  

 Accessible from Fortran, C 
and C++ 

Aparapi 

 OpenCL accelerated Java 7 

 Java APIs for data parallel 
algorithms (no need to 
learn OpenCL)  
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"KAVERI" AND HSA HAVE ARRIVED 
THE REVOLUTION HAS STARTED! 
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Questions? 
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DISCLAIMER & ATTRIBUTION 

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors. 
 

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and 
motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. 
AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time 
to the content hereof without obligation of AMD to notify any person of such revisions or changes. 
 

OpenCL™ is a trademark of Apple Inc. which is licensed to the Khronos organization. Linux™ is the trademark of Linus Torvalds. Microsoft™ and Windows™ are the 

trademarks of Microsoft Corp. All other names used in this presentation are for informational purposes only and may be trademarks of their respective owners. 

 

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS 
THAT MAY APPEAR IN THIS INFORMATION. 
 

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR 
ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES. 

 

ATTRIBUTION 

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States 
and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners. 
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MICRO-BENCHMARK SYSTEM CONFIGURATION 

Details AMD “Kaveri” APU 

Operating System Microsoft® Windows 8.1® (64-bit) 
Single Language 

Processor "Kaveri" A10 – 95W 
AMD Engineering Sample 
ZD376091I4468_40/37/18/07_130F 

CPU speed (base/boost) 3.7 GHz / 4.0 GHz 

GPU speed   720 MHz 

Memory 2x4GB DDR3-1600 

Disk HDD 

Video Driver 13.35 / HSA Beta 2.2 

Test Dates January 1-3, 2014 


