

Profiling techniques for parallel
applications

Analyzing program performance with
HPCToolkit

17/04/2014 PRACE Spring School 2014 2

Introduction

• Thomas Ponweiser

• Johannes Kepler University Linz (JKU)

• Involved in PRACE 3IP, WP 7
– Subtask “Debugging and Profiling techniques”
– Support expert for “Preparatory Access Type C”

• Personal background:

– Software developer since 2008
– Currently finishing my study of Technical Mathematics

17/04/2014 PRACE Spring School 2014 3

Introduction

• Focus of this session
– Profiling of parallel applications

• Statistical sampling
• Introduction to HPCToolkit

– Strategies for finding optimization potential
(not limited to HPCToolkit)
• “High penalty” and “Waste” metrics
• “Profiling using expectations”

17/04/2014 PRACE Spring School 2014 4

Outline
• Overview: Basic profiling techniques

– Statistical sampling vs. Code instrumentation

• HPCToolkit: A quick introduction

• Effective analysis strategies
– Pinpointing inefficiencies
– Pinpointing scalability bottlenecks

• Practical part
– Analysis of program profiles (hpcviewer)
– Analysis of program traces (hpctraceviewer)

17/04/2014 PRACE Spring School 2014 5

Prerequisites for Practical Part

• Download HPCToolkit profile and trace viewers

– http://hpctoolkit.org/software.html

– hpcviewer-5.3.2

– hpctraceviewer-5.3.2

– Try to launch them (Java required)

• Download prepared profiles

17/04/2014 PRACE Spring School 2014 6

http://hpctoolkit.org/software.html
http://hpctoolkit.org/software.html

Outline
• Overview: Basic profiling techniques

– Statistical sampling vs. Code instrumentation

• HPCToolkit: A quick introduction

• Effective analysis strategies
– Pinpointing inefficiencies
– Pinpointing scalability bottlenecks

• Practical part
– Analysis of program profiles (hpcviewer)
– Analysis of program traces (hpctraceviewer)

17/04/2014 PRACE Spring School 2014 7

Overview

Statistical sampling

• Sampling:

– Program flow is periodically
interrupted, current program state is
examined.

• Asynchronous sampling:

– Timers

– Hardware counters
(CPU cycles, L3 cache misses, etc.)

• Synchronous sampling:

– Calls to certain library functions are
intercepted (malloc, fread, …)

Code Instrumentation

• Instrumentation:

– Code for collecting profiling
information is inserted into the
original program.

• Approaches:

– Manual (measurement APIs)

– Automatic source level

– Compiler assisted (e.g. gprof)

– Binary translation

– Runtime instrumentation

17/04/2014 PRACE Spring School 2014 8

Overview

Statistical sampling

• Sampling:

– Program flow is periodically
interrupted, current program state is
examined.

• Asynchronous sampling:

– Timers

– Hardware counters
(CPU cycles, L3 cache misses, etc.)

• Synchronous sampling:

– Calls to certain library functions are
intercepted (malloc, fread, …)

Code Instrumentation

• Instrumentation:

– Code for collecting profiling
information is inserted into the
original program.

• Approaches:

– Manual (measurement APIs)

– Automatic source level

– Compiler assisted (e.g. gprof)

– Binary translation

– Runtime instrumentation

17/04/2014 PRACE Spring School 2014 9

Statistical sampling: Advantages

• No changes to program or build process
– Recommended: Debugging symbols

• No blind spots: Measurements cover

– Library functions
– Functions with unavailable source code

• Low overhead
– typically 3 to 5%

17/04/2014 PRACE Spring School 2014 10

Statistical sampling: Limitations

• Statistical sampling involves some degree of uncertainty
– Information attributed to source lines may not be accurate

• Certain types of information not available:
– Number of calls of a certain function

– Average runtime per call of a certain function

17/04/2014 PRACE Spring School 2014 11

Outline
• Overview: Basic profiling techniques

– Statistical sampling vs. Code instrumentation

• HPCToolkit: A quick introduction

• Effective analysis strategies
– Pinpointing inefficiencies
– Pinpointing scalability bottlenecks

• Practical part
– Analysis of program profiles (hpcviewer)
– Analysis of program traces (hpctraceviewer)

17/04/2014 PRACE Spring School 2014 12

HPCToolkit: A quick introduction

• Suite of tools for program performance analysis

• Developed at Rice University, Houston, Texas

• Features

– Statistical sampling

– Full call-path unwinding

– Attribution of metrics at the level of functions, loops and source lines

– Computation of user-defined metrics

17/04/2014 PRACE Spring School 2014 13

HPCToolkit: A quick introduction

• Supports

– Asynchronous sampling

• System timers, Hardware counters (PAPI library)

– Synchronous sampling (via LD_PRELOAD)

• Suited for

– Threaded applications

– MPI applications

– Hybrid applications (Threading + MPI)

17/04/2014 PRACE Spring School 2014 14

HPCToolkit: Basic workflow

17/04/2014 PRACE Spring School 2014 15

Step Command Description

(1) hpcrun Measures program performance

(2) hpcstruct Recovers program structure from the binary

(3) hpcprof / hpcprof-mpi Creates an experiment database

(4) hpcviewer /
hpctraceviewer

Displays experiment database
(profile or trace view)

Step (1) – Performance measurement

17/04/2014 PRACE Spring School 2014 16

A) Sequential or threaded applications:
hpcrun [options] command [args]

B) MPI or hybrid applications:
mpirun [mpi-opts] hpcrun [options] command [args]

Important options:
-e event@period ... Specify sampling sources
-t Enable trace data collection
-f frac Enable measurement only with probability frac.
Supported number formats: 0.1 or 1/10
-o outpath Specify measurement output directory

Example - sample every ~4 million cpu cycles:
mpirun -n 4 hpcrun -e PAPI_TOT_CYC@4100100 ./myprog --some-arg

Step (2): Program structure recovery

17/04/2014 PRACE Spring School 2014 17

Analyze program structure (recovers loops from optimized binaries):
hpcstruct [options] binary

Example:
hpcstruct ./myprog

Step (3): Experiment database creation

17/04/2014 PRACE Spring School 2014 18

Join (i) measurements, (ii) program structure and (iii) source code
together in a so-called "experiment database"

Three alternatives:
(a) threaded or small MPI executions
hpcprof [options] measurement-directory...

(b) medium size MPI executions
hpcprof-mpi [options] measurement-directory...

(c) large MPI executions
mpirun [mpi-opts] hpcprof-mpi [options] measurment-directory...

Step (3): Experiment database creation

17/04/2014 PRACE Spring School 2014 19

Important options for hpcprof and hpcprof-mpi:

-I path-to-source ... Location of source code
-S structure-file ... Specify the file generated by hpcstruct
-o outpath Name of the experiment database directory
-M metric Aggregation level for metric output:
sum Only metric sums
stats Sum, mean, stddev, min, max for each metric
thread Per-thread/process info (no aggregation)

Example:
hpcprof -I ./src/'*' -S myprog.hpcstruct -M stats measurments

Step (3): Experiment database creation

hpcprof vs. hpcprof-mpi

• Option –M thread
– Not supported by hpcprof-mpi

• Per-Process/Thread metric creation
– Only supported by hpcprof-mpi
– Enables metric plots and histograms in profile viewer
– Profiles generated with hpcprof-mpi are larger

17/04/2014 PRACE Spring School 2014 20

Step (4): Profile analysis

17/04/2014 PRACE Spring School 2014 21

Profile analysis
hpcviewer experiment-database

Trace analysis
hpctraceviewer experiment-database

HPCToolkit: An example

17/04/2014 PRACE Spring School 2014 22

(1) Measure performance of ./myprog running with 4 and 8 MPI processes
mpirun -n 4 hpcrun -o m4 -e PAPI_TOT_CYC@4100100 ./myprog --some-arg
mpirun -n 8 hpcrun -o m8 -e PAPI_TOT_CYC@4100100 ./myprog --some-arg

(2) Program structure recovery; generates ./myprog.hpcstruct
hpcstruct ./myprog

(3) Metric attribution
hpcprof -S myprog.hpcstruct –I ./src/'*' -o db-4-8 m4 m8

(4) View profile
hpcviewer db-4-8

Outline
• Overview: Basic profiling techniques

– Statistical sampling vs. Code instrumentation

• HPCToolkit: A quick introduction

• Effective analysis strategies
– Pinpointing inefficiencies
– Pinpointing scalability bottlenecks

• Practical part
– Analysis of program profiles (hpcviewer)
– Analysis of program traces (hpctraceviewer)

17/04/2014 PRACE Spring School 2014 23

Selecting sampling sources

• Questions:

1. Which sampling sources are available?

2. Which sampling source(s) should I select?

3. What is an appropriate sampling frequency?

17/04/2014 PRACE Spring School 2014 24

Selecting sampling sources

• Questions:

1. Which sampling sources are available?

2. Which sampling source(s) should I select?

3. What is an appropriate sampling frequency?

17/04/2014 PRACE Spring School 2014 25

(1) Available sampling sources

17/04/2014 PRACE Spring School 2014 26

List available sampling sources:
hpcrun -l

Output (shortened):

===
Available Timer events
===
Name Description

WALLCLOCK Wall clock time used by the process in microseconds.
REALTIME Real clock time used by the thread in microseconds.
CPUTIME CPU clock time used by the thread in microseconds.

Note: do not use multiple timer events in the same run.

(1) Available sampling sources

17/04/2014 PRACE Spring School 2014 27

===
Available PAPI preset events
===
Name Profilable Description

PAPI_TOT_CYC Yes Total cycles
PAPI_STL_ICY Yes Cycles with no instruction issue
...
PAPI_L3_TCM Yes Level 3 cache misses
...
PAPI_BR_CN Yes Conditional branch instructions
PAPI_BR_MSP Yes Conditional branch instructions mispredicted
...
PAPI_FP_INS No Floating point instructions
PAPI_FDV_INS Yes Floating point divide instructions
...

(1) Available sampling sources

17/04/2014 PRACE Spring School 2014 28

===
Other available events
===
Name Description

RETCNT Each time a procedure returns, the return count for that
 procedure is incremented
 (experimental feature, x86 only)

MEMLEAK The number of bytes allocated and freed per dynamic context

IO The number of bytes read and written per dynamic context

Selecting sampling sources

• Questions:

1. Which sampling sources are available?

2. Which sampling source(s) should I select?

3. What is an appropriate sampling frequency?

17/04/2014 PRACE Spring School 2014 29

(2) Selecting sampling sources

Most important sampling source:

PAPI_TOT_CYC CPU cycles (Measures execution time)
Alternatives:
• WALLCLOCK
• REALTIME
• CPUTIME

17/04/2014 PRACE Spring School 2014 30

• My experience:

– Most problems are traceable just by looking at
execution time (PAPI_TOT_CYC).

(2) Selecting sampling sources

Sampling sources for detecting inefficiencies:

PAPI_STL_ICY CPU cycles without activity (waiting times)

PAPI_L3_TCM L3 Cache misses (inefficient data access patterns)
Solutions: Data restructuring, Loop tiling, …

PAPI_FP_INS, PAPI_FDV_INS, … Floating point instructions

IO Bytes read/written

PAPI_BR_CN, PAPI_BR_MSP Branch misprediction

17/04/2014 PRACE Spring School 2014 31

(2) Selecting sampling sources

Other potentially interesting sampling sources:

MEMLEAK Allocated/freed bytes, may be used for debugging

RETCNT Number of times a function is being called

17/04/2014 PRACE Spring School 2014 32

• My experience:

– MEMLEAK can be helpful for debugging, but does not

always work.

• Had problems when running with OpenMPI.

Selecting sampling sources

• Questions:

1. Which sampling sources are available?

2. Which sampling source(s) should I select?

3. What is an appropriate sampling frequency?

17/04/2014 PRACE Spring School 2014 33

(3) Selecting the sampling frequency

• Rules of thumb:
– Between 10 and 1000 samples per second and process (or thread).
– More than 1000 samples/s

• can distort the profiling results
• make profiles/traces unnecessary big

– Profiling overhead should remain below 5%.

– For profiling:
• Longer runs with lower frequency

– For tracing:
• Shorter runs with higher frequency

17/04/2014 PRACE Spring School 2014 34

(3) Selecting the sampling frequency

• Formula for PAPI_TOT_CYC:
– [CPU GHz] ×104 … 10 samples / s
– [CPU GHz] ×106 … 1000 samples / s
– Choose something in between

• Good frequencies for other metrics are always application and
problem dependent

• For synchronous events (IO, MEMLEAK) no sampling frequency
needs to be specified

17/04/2014 PRACE Spring School 2014 35

Performance analysis strategies

• Detecting inefficiencies:
– Monitor “high-penalty” events, e.g.

• PAPI_L3_TCM

• PAPI_STL_ICY

– Define your own “waste metrics”
• E.g. “Missed floating point opportunities”:

• 2 × PAPI_TOT_CYC – PAPI_FP_INS

17/04/2014 PRACE Spring School 2014 36

Performance analysis strategies

• Detecting scalability bottlenecks:
“Profiling using expectations”
– Define your own metrics, reflecting your expectations

• Example: Strong scaling
– Experiment database with measurements for N and 2N processes

(fixed problem size)

– Define your own metric for parallel overhead, e.g.

• OVERHEAD = PAPI_TOT_CYC(2N) - PAPI_TOT_CYC(N)

17/04/2014 PRACE Spring School 2014 37

Performance analysis strategies

• Further reading:

– HPCToolkit User’s Manual

• http://hpctoolkit.org/documentation.html

– References given in User’s Manual

• In particular [3], [5], [8], [9].

17/04/2014 PRACE Spring School 2014 38

http://hpctoolkit.org/documentation.html
http://hpctoolkit.org/documentation.html

Outline
• Overview: Basic profiling techniques

– Statistical sampling vs. Code instrumentation

• HPCToolkit: A quick introduction

• Effective analysis strategies
– Pinpointing inefficiencies
– Pinpointing scalability bottlenecks

• Practical part
– Analysis of program profiles (hpcviewer)
– Analysis of program traces (hpctraceviewer)

17/04/2014 PRACE Spring School 2014 39

Detecting inefficiencies (1/4)

• Go to directory 1-inefficiency

• Open 1a-before-simple with hpcviewer.
– What is the “hot path” w.r.t. execution time?

– Within the routine mover_PC, which lines of code
are long-running?

– Do you spot optimization potential?

• Close experiment database.

17/04/2014 PRACE Spring School 2014 40

Detecting inefficiencies (2/4)

• Stay in directory 1-inefficiency
• Open 1a-before-allmetrics with
hpcviewer.
– Deselect exclusive metric columns for display
– What is the “hot path” with respect to

• Stalled CPU Cycles?
• L3 Cache misses?

• Leave database open.

17/04/2014 PRACE Spring School 2014 41

Detecting inefficiencies (3/4)

• In opened database, 1a-before-allmetrics
– Deselect all columns except

• PAPI_TOT_CYC:Sum (I)

• PAPI_FP_INS:Sum (I)

– Define a metric for missed floating point opportunities
• FPWASTE = 2 × PAPI_TOT_CYC – PAPI_FP_INS

– What is the “hot path” w.r.t. FPWASTE?

• Leave database open.

17/04/2014 PRACE Spring School 2014 42

Detecting inefficiencies (4/4)

• In addition to 1a-before-allmetrics, open database 1b-
after-allmetrics.
– Do the same for 1b-after-allmetrics as for 1a-before-allmetrics:

• Display only PAPI_TOT_CYC:Sum (I) and PAPI_FP_INS:Sum (I)
• Define metric FPWASTE

• Compare databases: Execution time and FPWASTE
– Of whole run (main)
– Of function mover_PC
– What has changed in the source code of mover_PC?

• Close both databases.

17/04/2014 PRACE Spring School 2014 43

Detecting load imbalance (1/1)

• Go to directory 2-imbalance.
• Open trace-totcyc-stats with hpcviewer.

– Display only PAPI_TOT_CYC:Mean (I) and PAPI_TOT_CYC:Max (I).
– Define metric IMBALANCE:

• PAPI_TOT_CYC:Max (I) / PAPI_TOT_CYC:Mean (I)

• Within the longest-running loop of main:
– Do you spot a routine with high runtime and high IMBALANCE?

• Close database, and re-open with hpctraceviewer.
– Do you find the routine in the trace?
– What is happening?

17/04/2014 PRACE Spring School 2014 44

Pinpointing scalability bottlenecks (1/2)

• Go to directory 3-scalbility
• Open 1-before-128-256 with hpcviewer

– Define a metric OVERHEAD as the difference of:
• 2.PAPI_TOT_CYC:Sum (I) (256 procs)
• 1.PAPI_TOT_CYC:Sum (I) (128 procs)

– What are the “hot paths” w.r.t. execution time and
OVERHEAD?

• Leave database open.

 17/04/2014 PRACE Spring School 2014 45

Pinpointing scalability bottlenecks (1/2)

• In addition to 1-before-128-256 ,
open 2-after-128-256

– How has the overall runtime changed?

– Has the hot path w.r.t. execution time changed?

– How has the source code changed in exchange.c?

• Close both databases.

 17/04/2014 PRACE Spring School 2014 46

Debugging

• Go to directory 4-debugging

• Open profile-mem-io with hpcviewer.

– Which routines read/write most of the data?

– Plot different metrics for main.

• Close database.

17/04/2014 PRACE Spring School 2014 47

References

• HPCToolkit documentation:

– http://hpctoolkit.org/documentation.html

17/04/2014 PRACE Spring School 2014 48

http://hpctoolkit.org/documentation.html
http://hpctoolkit.org/documentation.html

