
M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

Optimisation and Benchmarking
Part 2 – OpenMP

28. Nov 2014| Alan O‘Cais

a.ocais@fz-juelich.de

Live notes:
http://supercomputing.cyi.ac.cy/index.php/live

http://supercomputing.cyi.ac.cy/index.php/live

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

• To write an MPI code you need to work on the whole code,

distributing the data and the work completely

• With OpenMP you can develop the code incrementally, but you

must work on the whole application in order to get speedup

• OpenMP parallelism is not just about adding a few directives

• You don’t have to think as deeply as with MPI in order to get

your code working

• You do have to think as deeply as with MPI if you want to

get your code performing!

• There are many performance issues that need to be considered

2

Warning!!

– OpenMP is not as simple as it first appears…

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

Hands-on: OpenMP, Pt. 1
• Go to directory
~/PRACE_AutumnWorkshop_2014/OpenMP

• Take a look at ST1_serial_Frob.c

• Use ./compile.sh to compile

• Run it with ./run.sh <arguments>, check time

• Use X=40000 Y=40000 as dimensions

• Make a copy, edit original

• Do OpenMP parallelisation with one line
#pragma omp parallel for reduction(+:<>) private(<>)

• Run it with ./run.sh <arguments>, check time

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

Example two-socket node

• Local memory accesses have

higher bandwidth and lower

latency than remote accesses

• If all memory accesses from all

cores are to one memory then

the effective memory bandwidth

is reduced across all

processes/threads

• If all accesses are to remote

memory then “memory

bandwidth” will actually be

dominated by inter-socket

bandwidth

4

NUMA – Non-Uniform Memory Access

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

• Since accessing main memory is slow, modern

processors provide fast local memory (cache)

to speed up memory accesses

• Caches are only effective for data that is being

reused

• Data that has been used recently may have a

high likelihood of being used again (temporal

locality)

• Recently used data sits in the cache in case it is

required again soon

• Data is fetched from main memory to the

cache in blocks called cache lines as there is

a high likelihood that data nearby will be used

together (spatial locality)

• Often an algorithm will step through adjacent

locations in memory

• There may be multiple levels of cache, each

with different characteristics

• Most modern processors have 3 levels of cache

• Third level cache (L3 cache) is often shared

amongst several processor cores

5

Caches Hierarchies and Locality

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

• As caches are local copies of global memory, multiple cores can hold a

copy of the same data in their caches

• For separate MPI processes with distinct memory address spaces multiple

cores are not likely to hold copies of the same user data

• For OpenMP codes where multiple threads share the same address space

this could lead to problems

• Before accessing memory, a processor core will check its own cache

and the cache of the other socket to ensure consistency between

cache and memory

• This is referred to as cache-coherency

• Ensuring that a node is cache coherent does not mean that problems

associated with multiple copies of data are completely removed

• Data held in processor registers are not covered by coherence

• This lack of coherence can lead to a race condition

6

Cache Coherence

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

Example two single-core sockets

• Both processors have taken a copy of the same

data from main memory

• If one of them wants to write to this data, then the

local copy will be affected, but the main memory

does not change

• The reason for having fast cache is to avoid

slower main memory accesses

• On a cache coherent system, the rest of the node

needs to be told about the update

• Other processor’s cache needs to be told

that its data is “bad” and that it needs a fresh

copy

• Then the new data can be written into the

local copy held in cache

• If CPU 2 wishes to read from or write to the data it

needs to get a fresh copy

7

Cache coherence amongst multiple cores

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

• Cache coherency protocols update

data based on cache lines

• Even if two threads want to write to

different data elements in an array,

if they share the same cache line

then cache coherency protocols will

mark the other cache line as dirty

• In the best case false sharing leads

to serialisation of work

• In the worst case it can lead to

slowdown of parallel code

compared to the serial version

9

Contention - Cache Thrashing, False Sharing

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

Hands-on: OpenMP, Pt. 2

• Take a look at ST3_OMP_Frob_correct.c

• Use ./compile.sh to compile

• Run it with ./run.sh <arguments>, check time

• Now time it with X=10 Y=40 000 000

• Compare it with X=40 000 000 Y=10

• Why is there a difference?

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

• Creation and destruction of threads is an overhead that takes time

• In theory each entry and exit of a parallel region could lead to thread

creation and destruction

• in most OpenMP implementations threads are not destroyed at the

end of a parallel region but are merely put to sleep

• Entering and exiting a parallel region requires barriers to be called

between a team of threads

• Often referred to as thread creation/destruction overhead

• Staying within a parallel region, and having multiple worksharing

constructs within it reduces the overhead associated with entering and

exiting parallel regions

• For best performance avoid unnecessary synchronisation and

consider using NOWAIT with DO/for loops wherever possible

11

Thread creation overhead and synchronisation

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens

Hands-on: OpenMP, Pt. 3
• Now let’s get clever

– Make the code OpenMP independent

– Allow for reuse of random seed

• Implemented in
ST4_OMP_Frob_persistent_seeds.c

• Run it with ./run.sh <arguments>, check time

• What’s wrong?

• Fix it using a private variable in the parallel
region

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

28 November 2014 PRACE Autumn School, Athens 13

Special thanks:

Neil Stringfellow, iVEC Perth (formerly CSCS)

• All slide content from one of his presentations

• See full presentation at:

• http://www.speedup.ch/workshops/w39_2010/slides/S

peedupTutorial2010Stringfellow.pdf

http://www.speedup.ch/workshops/w39_2010/slides/SpeedupTutorial2010Stringfellow.pdf

