

Optimisation and Benchmarking Part 1 – LWM2, a useful tool

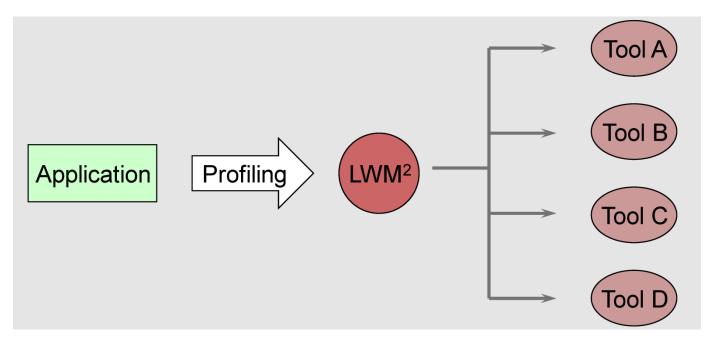
28. Nov 2014

Alan O'Cais a.ocais@fz-juelich.de

Live notes:

http://supercomputing.cyi.ac.cy/index.php/live

LWM² Introduction


- Light-Weight Measurement Module
 - Light-weight profiler
 - Low learning curve for usage
 - No recompilation / relinking
 - Simple and useful performance information
 - Light usage of resources
 - Low overhead during profiling
 - Geared towards cluster-based systems
 - Does not enable detailed performance analysis

Springboard for Tools

- LWM2 as springboard for performance tools
 - Low usage-curve for profiling
 - Simple output provides a guidance to use performance tool

Sample Output

Time spent in various sections

Time spent:	Average	Minimum	Maximum
Time spent in MPI: Time spent in MPI P2P: Time spent in MPI Coll: Time spent in MPI I/O:	86.24%	81.90%	91.38%
	9.46%	0.85%	20.69%
	75.70%	60.34%	87.07%
	0.00%	0.00%	0.00%

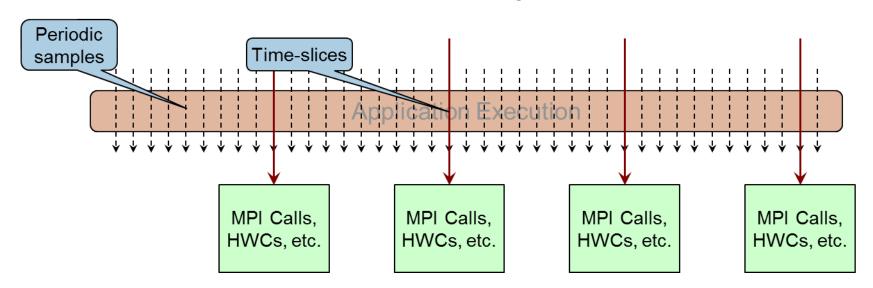
Multithreading Performance

J	Multithreading performance:	Average	Minimum	Maximum
	OMP effective threads:	1.98	1.98	1.98
	Max. thread count:	2	2	2

Hardware counters

Sequential performance:	Average Minimum		Maximum	
Load/Store hit ratio:	98.34%	98.31%	98.37%	

Usage


- No recompilation / relinking required when using LWM²
- Setting proper environment variables allows profiling with LWM²
- For MPI and hybrid applications:
 - mpiexec –x –E LD_PRELOAD=<LWM2_library> ...
 - The format of passing on the value to LD_PRELOAD may change for different MPI implementations
- For non-MPI applications
 - LD_PRELOAD=< LWM²_library> <executable>

What does LWM² output?

- Aggregation of data for
 - Every time slice
 - Whole execution (execution digest)

- Can read time slice information with l2freader utility
- We will focus on summary information (outputted to console)

Console Summary

- Summary divided into many parts
- Output changes for the type of application profiled
- First part provides overview of the application
- Includes, besides others
 - Job id
 - Wall clock time
 - Number of processes
- Rest of the sections contain profiling metrics
 - For MPI applications, metrics are presented with
 - Average, minimum and maximum values across processes

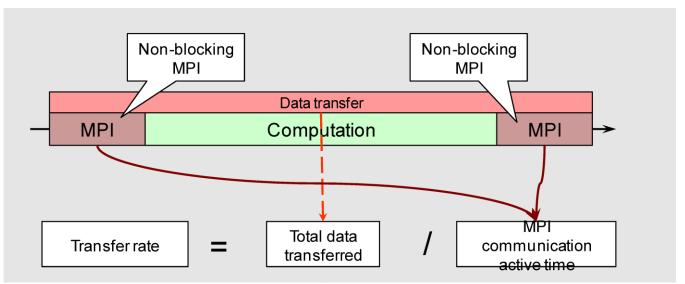
128.72

Wall clock time [s]: 12 Nr. of Processes: 4

MPI Communication

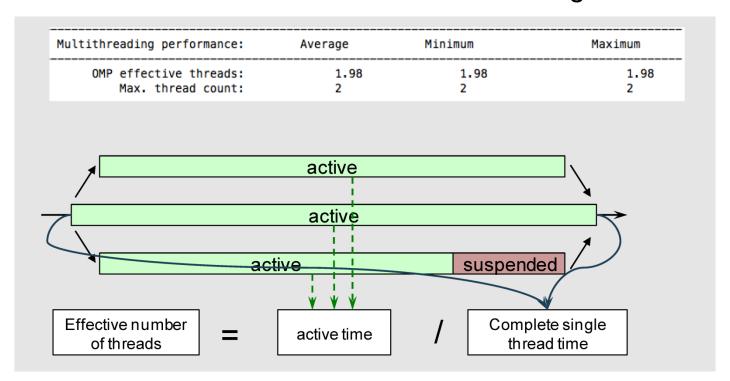
Basic metrics about MPI communication

MPI Communication:	Average	Minimum	Maximum
Size of P2P messages [Bytes]:	1000000.00	1000000	1000000
Size of collective messages sent [Bytes]:	175001.60	0	1000000
Size of collective messages recv [Bytes]:	175002.20	0	700000
P2P message frequency [/s]:	79.37	79.33	79.38
Collective invocation frequency [/s]:	396.84	396.67	396.90
P2P bytes transfer rate [/s]:	2542635658.91	1933962264.15	3360655737.70
Coll bytes transfer rate [/s]:	558480474.80	300151215.23	2204313671.27


Frequency is calculated using both active and inactive application execution time

MPI Communication

- Transfer rate values consider the active time in communication calls
 - Can result in high transfer rates for non-blocking communication
 - Indicates good overlap between communication and computation



Multithreading Performance

- The number of threads set for the application
- The effective number of threads active during execution

Interpreting Output: Summary

Metrics	Performance tools
L1 hit ratio	ThreadSpotter, Paraver
Effective thread count	ThreadSpotter, Vampir, Paraver
Time based metric - MPI	Scalasca, Vampir, Paraver, Dimemas
Time based metric - CUDA	Vampir, Paraver
Low transfer rates in MPI	Scalasca, Paraver, Vampir, Dimemas

What will we use it for?

- Benchmarking requires
 - Performing timing measurements
 - Testing scalability
- We will look at
 - OpenMP performance
 - MPI performance
 - IO performance
- LWM² will give us access to (and record) information in all of these areas with low effort on our part

Special Thanks: Aamer Shah, GRS Aachen

- All slide content from one of his presentations
- See full presentation at:
 - http://www.vi-hps.org/upload/projects/hopsa/hopsa-nov12lwm2.pdf
- Reference:

A. Shah, F. Wolf, S. Zhumatiy, and V. Voevodin.

Capturing inter-application interference on clusters.

In 2013 IEEE International Conference on Cluster Computing (CLUSTER)