
A SHORT INTRODUCTION TO
OPENMP

AND A FEW MORE STUFF AS WELL :-)

PLAN FOR THE DAY
The plan is to mix the OpenMP lecture with short exercises
During the exercises we will cover some base ground as well
Please follow the exercises as we present them

Don't peak into the solutions beforehand (try them out
first)

WHY DO WE FOCUS SO MUCH ON
MPI AND OPENMP

They have both gained significant ground
Think of FORTRAN as an example

Several applications have been developed for decades
(before we were here?)

and will be continued...
Other frameworks (i.e. PGAS languages) gain trend slowly but
steadily
Accelerators are also trending in HPC environments

THE QUESTION WHY DO WE NEED PARALLEL
SOFTWARE PROGRAMMING? HAS BEEN ANSWERED

However it is useful to keep the following in mind
before applying parallel technics on a given algorithm
make sure you have done your best to optimize the serial
version
think deeply where to divide/split the workload among
processes and processors
be comfortable to use other people's code in the process

TWO APPROACHES HAVE BEEN AROUND FOR QUITE
SOME TIME:

Domain decomposition
Functional decomposition

DOMAIN AND FUNCTIONAL DECOMPOSITION
APPROACHES

http://en.wikipedia.org/wiki/Functional_decomposition
http://en.wikipedia.org/wiki/Domain_decomposition_methods

OVERVIEW OF OPENMP
Shared vs Distributed memory models
Why OpenMP
How OpenMP works
Basic examples
How to execute the executable

SOME BASICS
API extension to C/C++ and Fortran languages

Most compilers support OpenMP
GNU, IBM, Intel, PGI, EkoPATH, Open64

Extensively used for writing programs for shared memory
architectures over the past decade
Thread (process) communication is implicit and uses variables
pointing to shared memory locations; this is in contrast with
MPI which uses explicit messages passed among each
process

THREADED PROGRAMMING

1. Fork - join model
2. Master and slave threads

EXECUTION MODEL

MEMORY ISSUES
Threads have access to the same address space
Communication is implicit
Developer needs to define

private data (per thread)
shared data (among threads)

CODING BASICS
Include the library
#include <omp.h>

Use the appropriate compiler flag
$ gcc -fopenmp
$ icc -openmp

OPENMP SOFTWARE STACK

COMMON API CALLS

Call Description
omp_get_num_threads()Returns the number of threads in

the concurrent team
omp_get_thread_num() Returns the id of the thread

inside the team
omp_get_num_procs() Returns the number of

processors in the machine
omp_get_max_threads()Returns maximum number of

threads that will be used in the
next parallel region

omp_get_wtime() Returns the number of seconds
since a time in the past

omp_in_parallel() 1 if in parallel region, 0 otherwise

TIME FOR SOME HANDS-ON TO BETTER DISCUSS
STUFF

EXERCISE
Add thread number and thread id in print out message
Make it thread safe
If you are done,

count the time it takes to complete
add a couple more lines to print out

Number of processors
Max number of threads

and create a submission script

Make use of omp_get_num_threads() and
omp_get_thread_num() calls and adjust printf
Will it now compile without the -fopenmp flag?
Have you used and initialized and variables?

If yes, are these common (i.e. shared) among threads?
If yes, how much meaning does a thread_id hold?

Make such a variable private (next subject)

To count the time in seconds use the omp_get_wtime call
To print out number of processors and number of max
threads in omp section use omp_get_num_procs and
omp_get_max_threads respectively
For a sample submission script see slide below

#!/bin/bash
#SBATCH -N 1
#SBATCH -c 8

export OMP_NUM_THREADS=8
./hello_omp

Use the guidelines from to submit it. If you are not sure
just ask!

here

https://events.prace-ri.eu/getFile.py/access?contribId=11&sessionId=5&resId=0&materialId=slides&confId=328

DATA SCOPING
For each parallel region the data environment is constructed
through a number of clauses
shared (variable is common among threads)
private (variable inside the construct is a new variable)
firstprivate (variable is new but initialized to its
original value via the master thread)
default (used to set overall defaults for construct)
lastprivate (variable's last value is copied outside the
openmp region)
reduction (variable's value is reduced at the end)

A FEW EXAMPLES
int x=1;
#pragma omp parallel shared(x) num_threads(2)
{
 x++;
 printf("x=%d\n",x);
}
printf("x=%d\n",x);

int x=1;
#pragma omp parallel private(x) num_threads(2)
{
 x++;
 printf("x=%d\n",x);
}
printf("x=%d\n",x);

int x=1;
#pragma omp parallel firstprivate(x) num_threads(2)
{
 x++;
 printf("x=%d\n",x);
}
printf("x=%d\n",x);

#include <stdio.h>
#include <omp.h>

int main()
{
 int x=1;
 #pragma omp parallel shared(x) num_threads(2)
 {
 x++;
 printf("x=%d\n",x);
 }
 printf("x=%d\n",x);
}
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:

$://showterm slow fast stop

SYNCHRONIZATION
OpenMP provides several synchronization mechanisms
barrier (synchronizes all threads inside the team)
master (only the master thread will execute the block)
critical (only one thread at a time will execute)
atomic (same as critical but for one memory location)

A FEW EXAMPLES
int x=1;
#pragma omp parallel num_threads(2)
{
 x++;
 #pragma omp barrier
 printf("x=%d\n",x);
}

int x=1;
#pragma omp parallel num_threads(2)
{
 #pragma omp master
 {
 x++;
 }
 printf("x=%d\n",x);
}

int x=1;
#pragma omp parallel num_threads(2)
{
 #pragma omp critical
 {
 x++;
 printf("x=%d\n",x);
 }
}

#include <stdio.h>
#include <omp.h>

int main()
{
 int x=1;
 #pragma omp parallel num_threads(2)
 {
 x++;
 #pragma omp barrier
 printf("x=%d\n",x);
 }
}
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"barrier.c" 13L, 166C 12,3 All

$://showterm slow fast stop

DATA PARALLELISM
Worksharing constructs

Threads cooperate in doing some work
Thread identifiers are not used explicitly
Most common use case is loop worksharing
Worksharing constructs should not be nested

DO/for directives are used in order to determine a parallel
loop region

THE FOR LOOP DIRECTIVE
#pragma omp for [clauses]
for (iexpr ; test ; incr)

Where clauses may be
private, firstprivate, lastprivate
Reduction
Schedule
Nowait

Loop iterations must be independent
Can be merged with parallel constructs
Default data sharing attribute is shared (attention!)

A SIMPLE EXAMPLE
#pragma omp parallel
#pragma omp for private(j)
for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 m[i][j] = f(i,j);
 }
}

j must be declared explicitly as private
i is privatized by default

THE SCHEDULE CLAUSE
Schedule clause may be used to determine the distribution of
computational work among threads

static, chunk; The loop is equally divided among pieces of
size chunk which are evenly distributed among threads in a
round robin fashion
dynamic, chunk; The loop is equally divided among pieces
of size chunk which are distributed for execution
dynamically to threads. If no chunk is specified chunk=1
guided; similar to dynamic with the variation that chunk
size is reduced as threads grab iterations

Configurable globally via OMP_SCHEDULE
i.e. setenv OMP_SCHEDULE "dynamic,4"

EXERCISE

On the adding two vectors example from this morning
add some timing using omp_get_wtime call and
check if scheduling can affect the timing result

(Hint: you will probably need two large vectors to
properly distribute the load)

REDUCTION CLAUSE
Useful in the case one variable's value is accumulated within a
loop
Using the reduction clause

A private copy per thread is created and initialized
At the end of the region the compiler safely updates the
shared variable
Operators may be +, *, -, /, &, ,̂ |, &&, ||

REDUCTION CLAUSE EXAMPLE

Add vector elements:
int i, N=atoi(argv[1]);
vector A(N);
double sum;
// Initialize vector values (now that we know
// we will use omp for the init part as well)
#pragma omp parallel for shared(A,N) private(i)
for(i=0; i<N; i++)
 A[i] = some_arbitrary_function(i);
// Calculate the sum now
#pragma omp parallel for shared(A,N) private(i) reduction(+:s)
for(i=0; i<N; i++)
 sum += A[i];
printf("sum = %d\n", sum);
return 0;

EXERCISE
Based on the previous slide can you create a parallel factorial

function?

MORE EXERCISES (CHOOSE ONE DEPENDING ON
HOW YOU FEEL LIKE)

Parallel pi calculation (simple)
Try to perform some benchmarking (i.e. measure times it
takes to calculate Pi from one to using more processors
and threads). What do you observe?

Matrix-matrix multiplication (harder)
Try to perform some benchmarking (i.e. measure times it
takes to multiply two matrices). Going from the serial to
the parallel versions (one with MPI and one with OpenMP)
what do you observe? Can you think of a way to mix MPI
and OpenMP?

Please discuss and share your observations with us!

THANK YOU!

