
A Classical Coulomb Solver

PRACE Summer of HPC 2016 – Training Week

July 4, 2016

In modern molecular dynamics (MD) simulations a fair amount of computation time is spent to re-
peatedly evaluate pairwise interaction between particles. In this exercise we want to implement a simple
Coulomb solver in a language of your choice.

PROBLEM DESCRIPTION
MD simulations need to compute interactions of a set of N particles. For long-range interactions, namely Coulomb
forces and Coulomb potentials this is especially adverse, since the number of interactions is not limited to particles
in the proximity. To obtain physically-consistent results in a simulation all pairwise interactions have to be taken into
account. The aim of this exercise is to implement such a Coulomb solver.

The input data for a Coulomb solver consists of only two entities; the charge qi of a particle i and the position xi
in R3 with the components x i , yi , and zi . The position of the particle i at xi is defined with its components as

xi =

x i
yi
zi

 . (1)

The distance between two particles |xi − x j | can be computed as

|xi − x j |=
q

(x i − x j)2 + (yi − y j)2 + (zi − z j)2 . (2)

Physical properties relevant for the simulation are the Coulomb potential Φ and the Coulomb force F as well as the
Coulomb energy Ec of the system. A Coulomb solver should at least calculate the forces acting on all particles due to
the presence of the other particles. Therefore, one has to compute the Coulomb forces Fi with i = 1 . . . N acting on
each particle via

Fi = qi

N
∑

j=1

q j

xi − x j

|xi − x j |3
(i 6= j) . (3)

OPTIONAL PART I: Some MD codes also need the potential Φ at each particle position. A compile-time switch (e.g.
template parameter) should be used to enable or disable this feature. Compute the Coulomb potentials Φi with
i = 1 . . . N at each particle position xi due to all other charges via

Φi =
N
∑

j=1

q j

|xi − x j |
(i 6= j) . (4)

OPTIONAL PART II: Another physical property – the Coulomb energy – might be useful for some applications. Com-
pute the Coulomb energy Ec of the system represented by

Ec =
1
2

N
∑

i=1

N
∑

j=1

qiq j

|xi − x j |
(i 6= j) . (5)

The Coulomb energy can be used as a quick check for the correctness of the computed results.

1 REQUIREMENTS
1.1 GENERAL REQUIREMENTS
Correct results for all entities up to datatype precision are mandatory. Additional numerical errors (round-off) arising
through a different summation order can be neglected in this exercise.

1

1.2 FURTHER OPTIONAL FEATURES
Additional goodies could be:

• Documentation via doxygen. www.doxygen.org
• Build environment via cmake. www.cmake.org

1.3 FORMAT OF INPUT/OUTPUT
The input and output files are defined as simple text files. The input file consists of four columns for each particle.
The first column contains the charge qi , the second, third and fourth columns hold the Cartesian coordinates x i , yi ,
and zi of the particle i. The output file must contain the force components Fx i

, Fyi
, and Fzi

of Fi in the first, second
and third column. The potential Φi should be stored in the fourth column if computed. The order of the lines in the
output must correspond to the order of the particles in the input file. For the Coulomb energy Ec it is sufficient to
print it together with other outputs (timings, additional information) on the console.

2 GUIDELINES
The implementation should allow different data types for the input and output data, e.g. single precision (32 bit)
or double precision (64 bit). The type should be a compile-time parameter. Do not use boost or other third-party
libraries containing the Coulomb solver for this exercise.

2.1 WORKFLOW
First, read the data from the input file. Then, start the clock and measure the computation time for the forces,
potentials and Coulomb energy. Stop the time measurement. Finally write the results to the output file. Print the
measured computation time on the console.

2.2 HARDWARE AND PARALLELIZATION
The code should run on any modern hardware, but can be optimized for a single compute node of the JURECA cluster.
One node of JURECA consists of two Intel Xeon E5-2680 v3 (Haswell) 12-core processors, which means you can
benefit from 2×12 cores and SMT features, if you decide to apply parallelization. First start with a simple sequential
program. Parallelization can be added as we go.

2.3 LANGUAGE & COMPILER VERSION
The source code should also contain appropriate comments in English. The program should compile with all modern
compilers.

3 DISCUSSION
Some question that may arise are:

• What is the computational complexity of the solved problem?
• How long does the computation of one time step take on your machine?
• How long would the computation of 3 trillion particles take?
• How many digits do you expect to be correct for such an computation?
• What is the limiting performance factor (bandwidth, clock speed, etc.)?
• What language features are important for the performance?
• Why did you chose one language feature/design pattern over another?

www.doxygen.org
www.cmake.org

	Requirements
	General Requirements
	Further Optional Features
	Format of Input/Output

	Guidelines
	Workflow
	Hardware and Parallelization
	Language & Compiler Version

	Discussion

