1

Hands-on: Vectorization

Georg Zitzlsberger
georg.zitzlsberger@vsb.cz

5th of July 2017

Abstract

In this Hands-on session we will optimize a matrix vector multipli-
cation with vectorization. Different exercises show different types of
stumbling blocks for vectorization which will be resolved with a broad
range of technologies. You’ll learn different techniques to increase
vectorization quality by this.

Getting Started

Follow the steps below for preparation:

1.

Login on Salomon and request a compute node (for compilation and
execution)

. The exercises are meant to be executed on Haswell nodes. If you want

to use KNC instead, use -mmic instead of -xcore-avx2; build on the
Haswell node and execute on the KNC coprocessor.

. Load Intel C++ Compiler module:

> module load intel/2017.05
> icpc -v
icpc version 17.0.4 (gcc version 7.1.0 compatibility)

. Extract the lab files Vectorization_Hands_on.tar.bz2 to some folder

in your $HOME; we’ll assume that your working directory is set to this

folder.

. Later, for Activity 3, load:

> module load Advisor/2017 _update3

> advixe-cl --version

Intel(R) Advisor Command Line Tool

Copyright (C) 2009-2017 Intel Corporation. All rights reserved.
Intel(R) Advisor 2017 Update 3 (build 510716) Command Line Tool
Copyright (C) 2009-2017 Intel Corporation. All rights reserved.

It also requires X11 forwarding when starting the GUI via advixe-gui!

Later, for Activity 4, load:

> module load SDE/7.41.0

> sde --version

Intel(R) Software Development Emulator. Version: 7.41.0 external
Copyright (C) 2008-2015, Intel Corporation. All rights reserved.

2 Activity 1 - Vectorization with Intel C++4
Compiler

In this activity, you enable the compiler to generate diagnostic information
on sample code that does not vectorize initially but can be vectorized, as will
be seen in the very end. We start with a first analysis of what is keeping the
compiler from vectorization.

2.1 Baseline

The example is contained in the subdirectory matvec.
We start with comparing the vectorized against the non-vectorized version.
First we compile and run it non-vectorized:

> icc -02 -xcore-avx2 -no-vec -no-simd -qno-openmp-simd multiply.c driver.c -o matvector
> ./matvector

ROW: 64 COL: 63

Elapsed time = 77?7 seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Now let’s see what the vectorization of the compiler can get us:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector
> ./matvector

ROW: 64 COL: 63

Elapsed time = 777 seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Question: What is your conclusion?

2.2 Start with Algorithmic Optimizations

Before starting to optimize an application or subcomponents, it should be
started at the algorithmic level. Selection of algorithms impacts data flow
and computation at a higher level. No compiler can automatically find an
alternative algorithm that would perform better - it’s subject to research to
do this. We exemplify this by the following exercise.

Assume we had extracted the underlying example code from a bigger appli-
cation. We would find a major limiting factor in terms of memory accesses
and unnecessary generalisation. Can you spot it? Can you think of an im-
provement that works for our case?

Hint: multiply.c does not have information from driver.c because the
compiler translates both independently.

Solution: solutions/unit-stride

After the (rather trivial) algorithmic optimizaion has been applied, measure
again with vectorization on:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector

> ./matvector

ROW: 64 COL: 63

Elapsed time = ?7? seconds

GigaFlops = 777
Sum of result = 77172000000.000000

You might see a slight improvement.
Question: What is your conclusion?

2.3 Compiler Optimization Report

Now, we take a look at what the compilers can tell us about the optimizations.
Take a look at vectorization of multiply.c not done:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector -qopt-report=5

> cat multiply.optrpt

LOOP BEGIN at solutions/unit-stride/multiply.c(36,9)
remark #15344: loop was not wvectorized: vector dependence prevents wectorization
remark #15346: vector dependence: assumed FLOW dependence between b[i] (37:13) and b[i] (37:13)
remark #15346: vector dependence: assumed ANTI dependence between b[i] (37:13) and b[i] (37:13)

remark #25439: wunrolled with remainder by 2
LOOP END

Question: What do those reports mean? What are the root causes?

2.4 Make it Vectorize

In this activity, you will make huge progress with vectorization by remedying
the reported problems from the optimization reports. As can be seen, we can
solve those in three different ways.

2.4.1 No Aliasing

First, we start by turning off aliasing for all function arguments throughout
a whole compilation unit. This is meaningful if we can guarantee that no
pointers in all the function arguments overlap (even if they're of the same
type, which still is allowed by strict ANSI aliasing). For our example this
is the case because all arrays have disjunctive memory locations. Hence, we
can compile the code as is without any modifications, only by adding one
single compiler option:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector -fargument-noalias

Rov. 64 coL: 63

Elapsed time = 77? seconds

GigaFlops = 777
Sum of result = 77172000000.000000

Compare the optimization outputs with and without this option.

4

2.4.2 No Vector Dependence

Instead of globally addressing assumed dependencies, we can also break them
up on a per-loop basis by using #pragma ivdep. Apply it to the proper loop
in the code, compare the performance and consult the optimization reports.
This time, no additional compiler options are needed:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector

Roi: 64 coL: 63

Elapsed time = 777 seconds

GigaFlops = 777
Sum of result = 77172000000.000000

Solution: solutions/ivdep

2.4.3 Restrict Keyword

Finally, we try yet another approach which is even finer grained: We apply
the keyword restrict. Can you find the correct location where to apply it
to? Be aware that we either have to assert C99 conforming code (-std=c99)
or apply the compiler option -restrict. The latter is compiler implementa-
tion specific and not standardized. However, most compilers allow that for
pre-C99 or even C++ (only for pointers, not references).

When applied correctly, the effective performance should be similar to the
previous two solutions:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector -restrict

ROvs 64 GoL 63

Elapsed time = 777 seconds

GigaFlops = 777
Sum of result = 77172000000.000000

Solution: solutions/restrict

Consult the optimization reports once more for validation.

2.5 Alignment

Select any of the three solutions from the previous activity above and generate
the assembly (-S) of multiply.c. You can see that the compiler generated
multiple versions and tests right in the beginning of the function. Those are
caused by unknown alignment of the array elements. Also the optimization
reports tell you that.

In the current activity we continue with the solution for #pragma ivdep
but the others work as well, provided that the required compiler options are

specified in addition. You will improve the performance of the code generated
by asserting alignment of data now.

2.5.1 Aligning

The only data that is used throughout the loops are arrays a, b and x.
Looking at their allocation in driver.c, it turns out that the arrays are not
necessarily aligned. By using a simple attribute you can guarantee alignment
of all three arrays. Which one would be best here? Change the code accord-
ingly.

The execution time won’t change yet:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector
> ./matvector

ROW: 64 COL: 63

Elapsed time = ?7? seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Hint: __declspec(align(...)) or __attribute__((aligned(...)))
Solution: solutions/align

This change was mostly a preparation for the next step, where we are going
to use that alignment.

2.5.2 Using Alignment

Next, we look into multiply.c. As it is compiled separately (like any com-
pilation unit) it does not have knowledge about the alignment. Thus it has
to assume unaligned data accesses. The compiler can generate multiple ver-
sions (e.g. for aligned and unaligned access) and select the proper execution
path during run-time. This involves some overhead (and increases code size).
Since we guaranteed proper alignment for the memory locations, to which
all the pointers in the function arguments refer to, we can safely assert this
for the compiler. There is a simple way to do so, which one?

The execution time now is reduced:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector
> ./matvector

ROW: 64 COL: 63

Elapsed time = 77? seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Hint: __assume aligned(...)
Solution: solutions/assume aligned

2.5.3 Padding for Alignment

Moving our focus away from sole compiler optimizations there is more room
for improvement: The amount of elements per row is not multiple of what a

6

SIMD vector (or multiple thereof) can keep. Hence each row needs remainder
handling. This remainder handling causes additional overhead at the end of
each row. To avoid this overhead, pad the row to a multiple of the SIMD
vector length. Padding is controlled via COLBUF in our example. Understand
how it works and apply a correct value to it so it is done correctly. Once
COLBUF is set correctly another improvement should become visible:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector

Roi: 64 coL: 64

Elapsed time = 777 seconds

GigaFlops = 777
Sum of result = 77172000000.000000

Note: We increased the size of the matrix (2-dimensional array) and yet the
performance became much better!

Solution: solutions/padding

2.5.4 Enforcing Aligned Accesses

Please ensure that all elements per row are now multiple of the SIMD vector
length. This allows a more aggressive optimization regarding alignment using
#pragma vector aligned. In addition we can tell the compiler that the rows
are multiple of at least the vector length by using __assume(<variable> 9
<multiple v1> == 0). The value of <multiple v1> can be any multiple of
the vector length.

Apply both to correct locations in multiply.c and measure the execution time
once more:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector
> ./matvector

ROW: 64 COL: 64

Elapsed time = 77?7 seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Hint: Only one loop needs the pragma; assertion of elements per row should
be as large as possible Solution: solutions/vector_aligned

Note:

Using the pragma and enforcing aligned accesses, unconditionally applies to
all accesses inside the loop. If we had not padded the matrix before and used
the pragma, the compiler would create incorrect code. The reason is that
the first row in the array a starts at a vector aligned address but the second
one does not (elements per row are not multiple of the vector length).

We won’t always see a crash for our example because the compiler tends to
use unaligned moves which work for both aligned and unaligned data (not
for the coprocessor!). Sandy Bridge based processors and later can figure out
actual alignment during run-time and, for the case of actually aligned data,

use the much faster aligned accesses internally instead. However, there is no
guarantee for that and it has to be expected to face SEGVs when the pragma
is used incorrectly. The SEGVs result from the GP faults of instructions that
require aligned data but have been provided with unaligned memory refer-
ences.

Note:

When using the official solution, you will notice that __assume(cols % 64
== () is used. This is not multiple of 64 byte but a multiple of 64 elements
of double precision FP and hence 64 * 8 byte = 512 byte per row. This is also
a multiple of the possible vector lengths. The larger the guaranteed elements
per vector can be asserted, the more flexibility is granted for the compiler.
You could also try to just use the vector length itself. Then you might notice
good but still not optimal results.

2.6 Final Comparison

Finally, compare the best result from above against it being not vectorized:

> icc -02 -xcore-avx2 -no-vec -no-simd -qno-openmp-simd multiply.c driver.c -o matvector
> ./matvector

ROW: 64 COL: 64

Elapsed time = ?7? seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Question: What is the overall speedup?

3 Activity 2 - Vectorization with OpenMP
4.0+

In this activity, you use the previous example from Activity 1 and vectorize
it by using OpenMP 4.0. Using OpenMP 4.5 extensions is possible but not
needed here.

3.1 Enabling OpenMP

We start with using the original version without any improvements and apply
OpenMP 4.0 to it. As a pre-requisite, it requires a compiler option ~qopenmp
or —qopenmp-simd to be specified. The latter is used here because it does
not introduce an OpenMP runtime like the former one and just enables the
SIMD constructs.

To the original version with algorithmic optimizations from section 2.2, add
both OpenMP SIMD construct and SIMD declare construct. If you've done
so, you should see a speedup compared to the original version:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector -qopenmp-simd
> ./matvector

ROW: 64 COL: 63

Elapsed time = 777 seconds

GigaFlops = 777

Sum of result = 77172000000.000000

Hint: Transform inner loop; don’t forget to take the non-unit stride into
account (not necessary though)
Solution: solutions/openmp4_simd

3.2 Further Optimizations

The vectorization is still not optimal as we’'ve learned in the beginning activ-
ity. Now re-apply those improvements to the current version too. Validation
of performance should show the same best result as from the previous activ-
ity, but using SIMD vectorization of OpenMP 4.0 now:

> icc -02 -xcore-avx2 multiply.c driver.c -o matvector -qopenmp-simd

> ./matvector

ROW: 64 COL: 64

Elapsed time = 77?7 seconds

GigaFlops = 777
Sum of result = 77172000000.000000

Hint: Apply the same steps as in previous activities. Not all might be needed,
though. #pragma ivdep won’t work here because it cannot be combined with
SIMD-enabled functions.

Solution: solutions/openmp4_simd best

3.3 SIMD Construct

In this activity, you become familiar with the OpenMP SIMD construct to
vectorize code the compiler won’t by default and even strict language inter-
pretation won'’t allow.

This example is rather artificial but demonstrates most of the SIMD con-
struct clauses from OpenMP 4.0 in one combined example.

Note: The examples need to be compiled with compiler option -qopenmp
or —qopenmp-simd set. Otherwise the pragma will be ignored. The latter
should be used here because it does not introduce an OpenMP runtime like
the former one and just enables the SIMD constructs.

3.3.1 Baseline

The example is contained in the subdirectory simd.
Initially we compile our example without any modification and record the
execution time and result:

> icc -02 -xcore-avx2 main.c simd.c -o simd
> ./simd

Elapsed time = ?7? seconds

Sum: 1249237760.000000

Note: Keep an eye on the value of the result shown as Sum!

3.3.2 Vectorize

It is quite slow and could be much faster. Hence, this is a great opportunity
to take a look at the optimization report:

> icc -02 -xcore-avx2 main.c simd.c -o simd -qopt-report=5

Look at the implementation to understand which problems are reported.
Note, that it’s not important to understand what’s computed but more, how
it is done.

Can you see were we're having potential for vectorization? Use #pragma omp
simd to enforce vectorization here.

What do you see and why? What is the execution time and result?

z i;c'—gQ -xcore-avx2 main.c simd.c -o simd -qopenmp-simd

Elapsed time = ?7? seconds
Sum: 1249237760.000000

Hint: Notice compiler warning
Solution: solutions/openmp4_simd

10

3.3.3 Reduction

What (obviously) needs to be done to safely vectorize the loop in simd.c in
first place? Which is the critical variable and what’s its operation? Apply
this change and record the execution time and result:

; i;c.—g2 -xcore-avx2 main.c simd.c -o simd -qopenmp-simd

Elapsed time = 7?77 seconds
Sum: 22013995008.000000

Hint: Take a look at the optimization report
Solution: solutions/openmp4_reduction

The result is not correct. There are two other properties of the loop body
that need to be provided to the pragma:

e Access via a pointer that’s linearly incremented

e Safe max. vector length to be used (hidden in the semantics of the
example!)

In the following, two additional clauses are applied to the pragma to retrieve
the correct result and take advantage from (enforced) vectorization.

3.3.4 Linear

Identify the pointer which is linearly incremented. By which value?
Apply the corresponding clause to the pragma and compare execution time
and result once more:

> icc -02 -xcore-avx2 main.c simd.c -o simd -qopenmp-simd
> ./simd

Elapsed time = 7?77 seconds

Sum: 22013995008.000000

Hint: See comment
Solution: solutions/openmp4_linear

3.3.5 Safelength

Finally, we have to assert that the maximum vector length may not exceed
a certain value. Otherwise, the result is incorrect which we saw with the
previous steps already. This is only true if vector length automatically se-
lected by the compiler together with #pragma omp simd exceeds that value!
Hence this won’t be visible with SSE but is visible with AVX and Intel MIC
architecture (single precision FP is used!).

Which vector length is safe and how can it be asserted?

Apply the corresponding clause to the pragma and compare execution time
and result a last time:

11

> icc -02 -xcore-avx2 main.c simd.c -o simd -qopenmp-simd
> ./simd

Elapsed time = 77? seconds

Sum: 1249237760.000000

The result is correct now. What is the speedup compared to the initial (com-
piler only) version?

Hint: See comment
Solution: solutions/openmp4_safelength

12

4 Activity 3 - Quality of Vectorization

In this activity, we revisit the previous examples from activities 1 & 2 and
analyze the vectorization efficiency and memory access patterns with Intel
Adwvisor. We also visualize the hot loops in the roofline model.

Start the tool with advixe-gui, create a project and analyze the previous
examples.

4.1 Vectorization Efficiency

Measure the vectorization efficiency of the baseline implementations and the
final ones. What is the change of the efficiency?

4.2 Roofline Model

Show the roofline model for the baseline implementations and the final ones.
How do they change?

4.3 Memory Access Patterns

Even in the baseline implementations, the memory accesses are unit-strided.
However, change the order of the inner and outer loops in multiply.c and
observe the change in the memory access patterns output.

13

5 Activity 4 - Future of Vectorization

In this activity, we use Intel Software Development Emulator (SDE) to em-
ulate AVX-512 enabled applications on Haswell. We again use the examples
from activities 1 & 2.

5.1 Build with AVX-512

Build the baseline of both examples from activities 1 & 2 as well as their
best implementations with AVX-512. It’s up to you whether you use KNL
(-xmic-avx512) or Skylake AVX-512 (-xcore-avx512).

5.2 Run Applications with SDE
Run the applications with SDE for KNL, e.g.:

> sde -knl -- ./matvec

...or for Skylake (Server), e.g.:

> sde -skx -- ./matvec

Note: Don’t use -skl because that’s Skylake client which does not have
AVX-512 extensions!

Question: Use the histogram and mask profiling tools of SDE to get infor-

mation about how many AVX-512 instructions were executed and whether
masking was used.

14

	Getting Started
	Activity 1 - Vectorization with Intel C++ Compiler
	Baseline
	Start with Algorithmic Optimizations
	Compiler Optimization Report
	Make it Vectorize
	No Aliasing
	No Vector Dependence
	Restrict Keyword

	Alignment
	Aligning
	Using Alignment
	Padding for Alignment
	Enforcing Aligned Accesses

	Final Comparison

	Activity 2 - Vectorization with OpenMP 4.0+
	Enabling OpenMP
	Further Optimizations
	SIMD Construct
	Baseline
	Vectorize
	Reduction
	Linear
	Safelength

	Activity 3 - Quality of Vectorization
	Vectorization Efficiency
	Roofline Model
	Memory Access Patterns

	Activity 4 - Future of Vectorization
	Build with AVX-512
	Run Applications with SDE

