Interactive exploration and analysis of large amounts of data from scientific simulations, in-situ visualization and application control are convincing scenarios for explorative sciences. Based on the open source software Jupyter or JupyterLab, a way has been available for some time now that combines interactive with reproducible computing while at the same time meeting the challenges of support for the wide range of different software workflows.
Even on supercomputers, the method enables the creation of documents that combine live code with narrative text, mathematical equations, visualizations, interactive controls, and other extensive output. However, a number of challenges must be mastered in order to make existing workflows ready for interactive high-performance computing. With so many possibilities, it's easy to lose sight of the big picture. This course provides a detailed introduction to interactive high-performance computing.
The following topics are covered:
- Opportunities and challenges of interactive HPC
- Functionality and interaction of the necessary components
- Introduction to the most important libraries
- Coupling and control of simulations
- Visualizing results interactively
Prerequisites: Experience in Python
Application
Registrations are only considered until 15 March 2018 due to available space, the maximal number of participants is limited. Applicants will be notified, whether they are accepted for participitation.
Instructors: Jens Henrik Göbbert, Alice Grosch, JSC
Contact
For any questions concerning the course please send an e-mail to j.goebbert@fz-juelich.de