
GPU programming with CUDA

Andrew Emerson,

with contributions from Luca Ferrara and Sergio
Orlandi

03/07/2019 1Introduction to CUDA programming

What are GPUs ?

Graphics Processing Units (GPU) were

originally designed for doing graphics

but now routinely used in HPC and

machine learning applications.

Very different design to conventional

CPUs, optimised for streaming

computations.

Most important vendors for HPC and

machine learning are NVIDIA who also

developed the CUDA language.

03/07/2019 Introduction to CUDA programming 2

Why use GPUs?

03/07/2019 Introduction to CUDA programming 3

Advantages

• Very large number of “cores” means potentially very
high performance increase compared to CPU
applications;

• Often low cost ($/Flop) and low energy consumption
(Watts/Flop)

Disadvantages

• May need complete rewrite of application;

• Low device memory (max 16/32 Gb)

• Depending on model, possible low transfer speeds.

CPU vs GPU Architectures

4

GPU hardware is designed so that more transistors are devoted
to data processing rather than data caching and flow control

– specialized for problems which can be classified as intense
data-parallel computations where the same set of
operations are executed on different data

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

10’s of threads 10000’s of threads

Processor die comparison

5

NVIDIA GPU Kepler (2013)

Intel Core i7-4960X

GPGPU Programming Model

7

• General Purpose GPU Programming relates to use GPU
computational power to solve problems other than graphics

• CPU and GPU are separate devices with separate memory
space addresses

• GPU is seen as an auxiliary coprocessor equipped with
thousands of cores and a high bandwidth memory

• They should work together for best benefit and performances
CPU GPU

GPGPU Programming Model

8

CPU GPU

• Optimized for low-latency accesses to
caches data sets

• Control logic for out-of-order and
speculative execution

• Best for serial or event driven tasks

• Optimized for data-parallel, throughput
computation

• Architecture tolerant of memory latency
• Best for data-parallel tasks

03/07/2019 Introduction to CUDA programming

GPGPU programming model

Serial, or processes with low
parallelism, remain on the
CPU, while highly parallel
operations are offloaded to the
GPU for processing. They are
then copied back.

Connection to device is
relatively slow so minimise
data transfers.

The GPU’s threads need to be
saturated otherwise the result
will be slower than CPU.

For max performance,
execution on the CPU should
continue as much as possible
while GPU is being used.

03/07/2019 Introduction to CUDA programming 9

PCI-e express
(~ 8 Gb/s)

offload data to process

copy back results

CPU execution

How do I program GPUs?

The situation is changing rapidly but possibilities include:

03/07/2019 Introduction to CUDA programming 10

• OpenMP

• v 4.0+ allows offloading of tasks onto GPUs

• OpenAcc

• High-level model, particularly suited for devices such as
GPUs.

Declarative languages

• CUDA

• Extension to C developed by NVIDIA. With PGI
compilers, FORTRAN extension also possible.

• OpenCL

• General framework for writing programs across
heterogenous devices. Often used for non-NVIDIA
GPUs and FPGAs.

Languages

CUDA: Compute Unified Device
Architecture

• Parallel computing platform and API created by NVIDIA for programming on

GPUs.

• Originally only for C/C++ but now FORTRAN API is available with PGI

compilers.

• First version of the SDK (Software Development Kit) arrived in 2007

(CUDA-1) - in 2019 we now have CUDA -10.

• The SDK includes:

– Drivers, runtimes and API

– Compiler wrappers for compiling cuda code (nvcc)

– Libraries (cuBLAS, cuFFT, cuSolver, etc)

– Debuggers (cuda-gdb, cuda-memcheck), profilers (nvprof, nView), etc.

• Freely downloadable from NVIDIA, but cuda-enabled GPUs are available

only from NVIDIA.

• Fastest solution when using NVIDIA devices.

03/07/2019 Introduction to CUDA programming 11

NVIDIA GPU Achritecture

03/07/2019 Introduction to CUDA programming 12

GPU consists of many Streaming Multiprocessors (SM), each
containing GPU cores and shared memory.

SM-0 SM-1 SM-n

…

L2 cache

Global memory

cuda core

CPU

PCIe
8 Gb/s

150 Gb/s

280 Gb/s

1Tb/s

Kepler architecture

the GPU Execution Model

13

Software

Thread

Thread Block

...

Grid

Grid: a collection of thread blocks
 Thread blocks do not synchronize with each

other.
 Communication between blocks is

expensive.

Thread Block: a group of threads
 Threads within a block can cooperate (

light-weight synchronization).

Thread: a sequential execution unit
 All threads execute same sequential

program.
 Threads execute in parallel.
 A “warp” is a set of 32 threads which

execute the same instruction.

the GPU Execution Model

14

Software

Thread

Thread Block

...

Grid

GPU
core

GPU

Hardware

Streaming
Multiprocessor

When a CUDA kernel is invoked:
• thread blocks are assigned to SMs in

a round robin mode.
• the thread block remains on the SM

until all its threads have finished
(remember, no communication
between thread blocks).

• threads of each thread block are
partitioned into warps of
consecutive threads

• each thread in a warp executes the
same instruction simultaneously,
with each thread being managed by
one GPU core.

executed by

executed by

executed by

Trasparent Scalability

15

The GPU runtime system can execute blocks in any order
relative to each other

This flexibility enables to execute the same application code
on hardware with different numbers of SMs.

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

SM2

CUDA thread indexing

16

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

In CUDA it is possible to launch kernels with
1D, 2D or 3D arrays of thread blocks within
the Grid and threads within the block.

At runtime CUDA will define variables
showing how the blocks are arranged in the
Grid and the threads within each block,
together with block and thread indices.

Grid and Block Dimensions

gridDim.x,
gridDim.y,
gridDim.z

Number of blocks in the x,y and z
dimensions

blockDim.x,
blockDim.y,
blockDim.z

Number of threads in the x, y and z
dimensions

Block and Thread index

blockIdx.x,
blockIdx.y,
blockIdx.z

Block’s index in x, y and z dimensions

ThreadIdx.x,
ThreadIdx.y,
ThreadIdx.z

Thread’s index in the x, y and z directions
(of the Block)

CUDA thread indexing

03/07/2019 Introduction to CUDA programming 17

Grid and Block Dimensions

gridDim.x,
gridDim.y,
gridDim.z

Number of blocks in the x,y
and z dimensions

blockDim.x,
blockDim.y,
blockDim.z

Number of threads in the x, y
and z dimensions

Block and Thread index

blockIdx.x,
blockIdx.y,
blockIdx.z

Block’s index in x, y and z
dimensions

ThreadIdx.x,
ThreadIdx.y,
ThreadIdx.z

Thread’s index in the x, y and
z directions (of the Block)

For the programmer usually
important to know the unique or
global index of a thread.

This can be calculated for the
different block and thread
topologies using the CUDA
variables.

1D grid of 1D blocks

threadId=(blockIdx.x*blockDim.x)+threadIdx.x

1D grid of 2D blocks

threadId=(blockIdx.x*blockDim.x*blockDim.y) +

(threadIdx.y*blockDim.x) + threadIdx.x

EXAMPLES

CUDA and NVIDIA GPUs

03/07/2019 Introduction to CUDA programming 18

Code
name

Product
name

Compute
capability

SMM
units

Max
threads/
block

Max
thread
blocks/s
m

#cores (FP32)

Kepler
(GK210)

Tesla K40 3.7 15 1024 16 2496

Maxwell Tesla M40 5.2 24 1024 32 3072

Pascal Tesla
P100

6.0 56 1024 32 3584

Volta Tesla
V100

7.0 80 1024 32 5120

How many threads and blocks can I use?
Depends on the compute capability of the device which
describes the GPU features available.

But often makes sense to set threads/block =1024 and make the number of blocks =
problem_size/1024

Writing CUDA programs

To write a CUDA C program you do something similar to the

following:

1. Declare and allocate host and device memory

2. Initialize host data

3. Copy data from host to device

4. Execute one or more kernels

5. Transfer results from the device to the host

Clearly, you need to know what parts of the code should be

written as kernels.

03/07/2019 Introduction to CUDA programming 19

First CUDA program

#define N 512

#define THREADS_PER_BLOCK 512

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof(int); // we need space for N integers

int i;

// allocate device copies of a, b, c

cudaMalloc(&dev_a, size);

cudaMalloc(&dev_b, size);

cudaMalloc(&dev_c, size);

// allocate host arrays

a = (int*)malloc(size);

b = (int*)malloc(size);

c = (int*)malloc(size);

//Initialise a,b arrays

for (i=0;i<N;i++)

a[i]=b[i]=1;

// copy inputs to device

cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

03/07/2019 Introduction to CUDA programming 20

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index <N)
c[index] = a[index] + b[index];

}

Memory Allocation and Copying

03/07/2019 Introduction to CUDA programming 21

Code Meaning

int size=N*sizeof(int);

int *dev_a;

cudaMalloc(&dev_a, size);

• allocate on the device size bytes (in
this case N ints).

• note the double pointer

cudaMemcpy(dev_a, a, size,

cudaMemcpyHostToDevice);

cudaMemcpy(a, dev_a, size,

cudaMemcpyDeviceToHost);

• copy array a from host to array dev_a
on device

• copy array dev_a from device to array
a on host

cudaFree(dev_a); • Free memory on device associated
with array dev_a.

The cudaMemcpy calls will wait until previous CUDA kernels have finished and will
block until the data has been transferred.

CUDA kernels

• Kernel functions indicated in the code by __global__ (called by the

host) or __device__ (called by another function on the device).

• Must be void - cannot return values

• Remember that every CUDA thread executes the code in the

function. May need to use if statements to make sure unallocated

memory is not accessed.

03/07/2019 Introduction to CUDA programming 22

__global__ void add(int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x *

blockDim.x; // global thread id

if (index <N)

c[index] = a[index] + b[index];

}

Launching CUDA kernels from host

• Just like a call to a standard C function (with no return value) but

need to specify the kernel configuration, i.e the number of thread

blocks and threads in a block (block size), in the <<<>>>.

• The kernel function needs the __global__ identifier.

• The call is non-blocking, i.e. will return almost immediately. In this

way you can overlap GPU and CPU execution.

• To make sure kernel launches are synchronised you can call

cudaMemcpy() or invoke explicitly cudaDeviceSynchronize();

03/07/2019 Introduction to CUDA programming 23

add<<< THREAD_BLOCKS, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

For a general problem size N very often the following formula is used to give the
minimum number of thread blocks required:

thread blocks=(N +blocksize/1)/blocksize

Compiling and running a CUDA
program

• Compile CUDA programs with nvcc, a wrapper of another C compiler, called
the host compiler (often gcc, but could be something else).

• nvcc processes and compiles the CUDA sections, while non-CUDA code is
forwarded to the host compiler.

• CUDA source is first compiled to PTX assembly language, before being
converted by the driver to binary for the GPU.

• On some systems important to specify the GPU architecture (--arch/--gpu-
architecture) otherwise CUDA code won’t be compiled. The option will
determine the level of CUDA available to your code and the number of
threads and thread blocks available.

03/07/2019 Introduction to CUDA programming 24

module load cuda

nvcc -arch=sm_37 -o add add.cu

log onto a node with a GPU

./add

Other CUDA command line programs

• nvidia-smi

– Shows which GPUs are available and gives information about them

– Can be used in scrolling mode when running CUDA programs

• nvprof

– Quick profiler, useful for showing memory transfers between host

and device.

– More sophisticated profiling can be done with nvvp.

• cuda-memcheck

– Ideal for spotting memory leaks in the CUDA program. Will

considerably slow execution.

• cuda-gdb

– CUDA debugger

03/07/2019 Introduction to CUDA programming 25

Further CUDA

Unified Memory

– Allows allocated data to be read or written by either CPUs or

GPUs, i.e. no need to explicit copy data.

– Complete implementation available from Pascal P100, while

Kepler K80 has a limited version.

– Requires some care or could be slower than explicit copying.

– Remember this is really “virtual” memory- data still has to be

copied over the PCIe link.

03/07/2019 Introduction to CUDA programming 26

UNIFIED MEMORY

GPU GPU GPU CPU CPU

cudaMallocManaged(&x,N*sizeof(float));

further CUDA

Shared Memory

– Fast, on-chip memory with very low

latency

– Allocated per thread so all threads in

the block have access to the shared

memory.

– Threads can access data in shared

memory loaded from global memory

by other threads in the same threads

block.

– Useful when performing parallel

reduction (with thread

synchronization).

– Can be defined at compile or at run

time - if runtime, added as a third

parameter to the kernel configuration

and use extern keyword.

03/07/2019 Introduction to CUDA programming 27

__kernel__

void kernel(double *x, int n) {

extern __shared__ double sdata[];

int tid=threadIdx.x;

sdata[tid]=0.0

…

}

kernel<<<1,n,n*sizeof(int)>>>(x,n)

;

further cuda

thread synchronization

– With __syncthreads()

possible to synchronize

threads within a thread

block

– often used with shared

memory to avoid race

conditions

03/07/2019 Introduction to CUDA programming 28

__global__ void reverse(int *d,int n)

{

extern __shared__ int s[];

int t=threadIdx.x;

int tr = n-t-1;

s[t] =d[t];

__syncthreads();

d[t] = s[tr];

}

further cuda - CUDA streams

• CUDA (at least capability 2.x) allows kernels to be launched in
streams.

• The commands in each stream are executed in order but the
streams are asynchronous with respect to each other.

• This allows much greater concurrency in the CUDA code.

03/07/2019 Introduction to CUDA programming 29

stream 1

stream 2

stream 3

serial execution of
CUDA kernels

concurrent execution of
kernels in streams

CUDA FORTRAN

• Recent introduction due to collaboration with NVIDIA and PGI. Best current

implementation of CUDA FORTRAN is with PGI compilers.

• Same concepts of threads and thread blocks as CUDA C (e.g threadidx%x, blockid%y,

etc..). Kernels are subroutines.

• Variables allocated on the GPU identified by device attribute, i.e. no explicit copy.

• Particularly useful feature is automatic kernel generation by CUF kernels (cf with

OpenAcc).

03/07/2019 Introduction to CUDA programming 30

program testramp

use cublas

use ramp

integer, parameter :: N = 20000

real, device :: x(N)

twopi = atan(1.0)*8

call buildramp<<<(N-1)/512+1,512>>>(x,N)

!$cuf kernel do

do i = 1, N

x(i) = 2.0 * x(i) * x(i)

end do

print *,"float(N) = ",sasum(N,x,1)

end program

module ramp

real, constant :: twopi

contains

attributes(global) &

subroutine buildramp(x, n)

integer ::I

i=threadidx%x

….

end subroutine

end

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra NVIDIA cuFFT

IMSL Library

Building-block
Algorithms for

CUDA

Matrix Algebra
on GPU and
Multicore

ArrayFire Matrix
Computations

Sparse Linear
Algebra

C++ STL
Features for

CUDA

Some GPU-accelerated Libraries

