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What are GPUs ?

Graphics Processing Units (GPU) were 

originally designed for doing graphics 

but now routinely used in HPC and 

machine learning applications.

Very different design to conventional 

CPUs, optimised for streaming

computations.

Most important vendors for HPC and 

machine learning are NVIDIA who also 

developed the CUDA language.
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Why use GPUs?
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Advantages

• Very large number of “cores” means potentially very 
high performance increase compared to CPU 
applications;

• Often low cost ($/Flop) and low energy consumption 
(Watts/Flop)

Disadvantages

• May need complete rewrite of application;

• Low device memory (max 16/32 Gb)

• Depending on model, possible low transfer speeds. 



CPU vs GPU Architectures
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GPU hardware is designed so that more transistors are devoted 
to data processing rather than data caching and flow control

– specialized for problems which can be classified as intense 
data-parallel computations where the same set of 
operations are executed on different data

Cache
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Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

10’s of threads 10000’s of threads



Processor die comparison
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NVIDIA GPU Kepler (2013)

Intel Core i7-4960X



GPGPU Programming Model
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• General Purpose GPU Programming relates to use GPU 
computational power to solve problems  other than graphics

• CPU and GPU are separate devices with separate memory
space addresses

• GPU is seen as an auxiliary coprocessor equipped with 
thousands of cores and a high bandwidth memory

• They should work together for best benefit and performances
CPU GPU



GPGPU Programming Model
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CPU GPU

• Optimized for low-latency accesses to 
caches data sets

• Control logic for out-of-order and 
speculative execution

• Best for serial or event driven tasks

• Optimized for data-parallel, throughput 
computation

• Architecture tolerant of memory latency
• Best for data-parallel tasks
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GPGPU programming model

Serial, or processes with low 
parallelism, remain on the 
CPU, while highly parallel 
operations are offloaded to the 
GPU for processing. They are 
then copied back.

Connection to device is 
relatively slow so minimise 
data transfers.

The GPU’s threads need to be 
saturated otherwise the result 
will be slower than CPU.

For max performance, 
execution on the CPU should 
continue as much as possible 
while GPU is being used.
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PCI-e express
(~ 8 Gb/s)

offload data to process

copy back results

CPU execution



How do I program GPUs?

The situation is changing rapidly but possibilities include:
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• OpenMP

• v 4.0+ allows offloading of tasks onto GPUs

• OpenAcc

• High-level model, particularly suited for devices such as 
GPUs.

Declarative languages

• CUDA

• Extension to C developed by NVIDIA. With PGI 
compilers, FORTRAN extension also possible.

• OpenCL

• General framework for writing programs across 
heterogenous devices. Often used for non-NVIDIA 
GPUs and FPGAs.

Languages



CUDA: Compute Unified Device 
Architecture

• Parallel computing platform and API created by NVIDIA for programming on 

GPUs.

• Originally only for C/C++ but now FORTRAN API is available with PGI 

compilers.

• First version of the SDK (Software Development Kit) arrived in 2007 

(CUDA-1) - in 2019 we now have CUDA -10.

• The SDK includes:

– Drivers, runtimes and API

– Compiler wrappers for compiling cuda code (nvcc)

– Libraries (cuBLAS, cuFFT, cuSolver, etc)

– Debuggers (cuda-gdb, cuda-memcheck), profilers (nvprof, nView), etc.

• Freely downloadable from NVIDIA, but cuda-enabled GPUs are available 

only from NVIDIA.

• Fastest solution when using NVIDIA devices.
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NVIDIA GPU Achritecture
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GPU consists of many Streaming Multiprocessors (SM), each 
containing GPU cores and shared memory.

SM-0 SM-1 SM-n

…

L2 cache

Global memory

cuda core

CPU

PCIe
8 Gb/s

150 Gb/s

280 Gb/s

1Tb/s

Kepler architecture



the GPU Execution Model
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Software

Thread

Thread Block 

...

Grid

Grid: a collection of thread blocks
 Thread blocks do not synchronize with each 

other.
 Communication between blocks is 

expensive.

Thread Block: a group of threads
 Threads within a block can cooperate ( 

light-weight synchronization).

Thread: a sequential execution unit
 All threads execute same sequential 

program.
 Threads execute in parallel. 
 A “warp” is a set of 32 threads which 

execute the same instruction.



the GPU Execution Model
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Software

Thread

Thread Block 

...

Grid

GPU
core

GPU

Hardware

Streaming
Multiprocessor

When a CUDA kernel is invoked:
• thread blocks are assigned to SMs in 

a round robin mode.
• the thread block remains on the SM 

until all its threads have finished 
(remember, no communication 
between thread blocks).

• threads of each thread block are 
partitioned into warps of 
consecutive threads

• each thread in a warp executes the 
same instruction simultaneously, 
with each thread being managed by 
one GPU core.

executed by

executed by

executed by



Trasparent Scalability
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The GPU runtime system can execute blocks in any order 
relative to each other

This flexibility enables to execute the same application code 
on hardware with different numbers of SMs.

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

SM2



CUDA thread indexing

16

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

In CUDA it is possible to launch kernels with 
1D, 2D or 3D arrays of thread blocks within 
the Grid and threads within the block.

At runtime CUDA will define variables 
showing how the blocks are arranged in the 
Grid and the threads within each block, 
together with block and thread indices.

Grid and Block Dimensions

gridDim.x,
gridDim.y, 
gridDim.z

Number of blocks in the x,y and z 
dimensions 

blockDim.x,
blockDim.y, 
blockDim.z

Number of threads in the x, y and z 
dimensions

Block and Thread index

blockIdx.x, 
blockIdx.y, 
blockIdx.z

Block’s index in x, y and z dimensions

ThreadIdx.x, 
ThreadIdx.y,
ThreadIdx.z

Thread’s index in the x, y and z directions 
(of the Block)



CUDA thread indexing
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Grid and Block Dimensions

gridDim.x,
gridDim.y, 
gridDim.z

Number of blocks in the x,y
and z dimensions 

blockDim.x,
blockDim.y, 
blockDim.z

Number of threads in the x, y 
and z dimensions

Block and Thread index

blockIdx.x, 
blockIdx.y, 
blockIdx.z

Block’s index in x, y and z 
dimensions

ThreadIdx.x, 
ThreadIdx.y,
ThreadIdx.z

Thread’s index in the x, y and 
z directions (of the Block)

For the programmer usually 
important to know the unique or 
global index of a thread.

This can be calculated for the 
different block and thread 
topologies using the CUDA 
variables.

1D grid of 1D blocks

threadId=(blockIdx.x*blockDim.x)+threadIdx.x

1D grid of 2D blocks

threadId=(blockIdx.x*blockDim.x*blockDim.y) + 

(threadIdx.y*blockDim.x) + threadIdx.x

EXAMPLES



CUDA and NVIDIA GPUs
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Code 
name

Product 
name

Compute 
capability

SMM 
units

Max 
threads/
block

Max 
thread
blocks/s
m

#cores (FP32)

Kepler 
(GK210)

Tesla K40 3.7 15 1024 16 2496

Maxwell Tesla M40 5.2 24 1024 32 3072

Pascal Tesla
P100

6.0 56 1024 32 3584

Volta Tesla 
V100

7.0 80 1024 32 5120

How many threads and blocks can I use?
Depends on the compute capability of the device which 
describes the GPU features available.

But often makes sense to set  threads/block =1024 and make the number of blocks = 
problem_size/1024



Writing CUDA programs

To write a CUDA C program you do something similar to the 

following:

1. Declare and allocate host and device memory

2. Initialize host data

3. Copy data from host to device

4. Execute one or more kernels

5. Transfer results from the device to the host

Clearly, you need to know what parts of the code should be 

written as kernels.
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First CUDA program

#define N 512

#define THREADS_PER_BLOCK 512

int main( void ) {

int *a, *b, *c; // host copies of a, b, c

int *dev_a, *dev_b, *dev_c; // device copies of a, b, c

int size = N * sizeof( int ); // we need space for N integers

int i;

// allocate device copies of a, b, c

cudaMalloc( &dev_a, size );

cudaMalloc( &dev_b, size );

cudaMalloc( &dev_c, size );

// allocate host arrays

a = (int*)malloc( size );

b = (int*)malloc( size );

c = (int*)malloc( size );

//Initialise a,b arrays

for (i=0;i<N;i++)

a[i]=b[i]=1;

// copy inputs to device

cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel on GPU, passing parameters

add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>( dev_a, dev_b, dev_c);

// copy device result back to host copy of c

cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);
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__global__ void add( int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index <N)
c[index] = a[index] + b[index];

}



Memory Allocation and Copying
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Code Meaning

int size=N*sizeof(int);

int *dev_a; 

cudaMalloc(&dev_a, size );

• allocate on the device size bytes (in 
this case N ints).

• note the double pointer 

cudaMemcpy( dev_a, a, size, 

cudaMemcpyHostToDevice);

cudaMemcpy( a, dev_a, size, 

cudaMemcpyDeviceToHost);

• copy array a from host to array dev_a
on device

• copy array dev_a from device to array 
a on host

cudaFree(dev_a); • Free memory on device associated 
with array dev_a.

The cudaMemcpy calls will wait until previous CUDA kernels have finished and will 
block until the data has been transferred.



CUDA kernels

• Kernel functions indicated in the code by __global__ (called by the 

host) or __device__ (called by another function on the device).

• Must be void - cannot return values

• Remember that every CUDA thread executes the code in the 

function. May need to use if statements to make sure unallocated 

memory is not accessed.
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__global__ void add( int *a, int *b, int *c) {

int index = threadIdx.x + blockIdx.x * 

blockDim.x; // global thread id

if (index <N)

c[index] = a[index] + b[index];

}



Launching CUDA kernels from host

• Just like a call to a standard C function (with no return value) but 

need to specify the kernel configuration, i.e the number of thread 

blocks and threads in a block (block size), in the <<<>>>. 

• The kernel function needs the __global__ identifier.

• The call is non-blocking, i.e. will return almost immediately. In this 

way you can overlap GPU and CPU execution.

• To make sure kernel launches are synchronised you can call 

cudaMemcpy() or invoke explicitly cudaDeviceSynchronize();
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add<<< THREAD_BLOCKS, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

For a general problem size N very often the following formula is used to give the 
minimum number of thread blocks required:

thread blocks=(N +blocksize/1)/blocksize



Compiling and running a CUDA 
program

• Compile CUDA programs with nvcc, a wrapper of another C compiler, called 
the host compiler (often gcc, but could be something else). 

• nvcc processes and compiles the CUDA sections, while non-CUDA code is 
forwarded to the host compiler.

• CUDA source is first compiled to PTX assembly language, before being 
converted by the driver to binary for the GPU.

• On some systems important to specify the GPU architecture (--arch/--gpu-
architecture) otherwise CUDA code won’t be compiled. The option will 
determine the level of CUDA available to your code and the number of 
threads and thread blocks available.
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module load cuda

nvcc -arch=sm_37 -o add add.cu

# log onto a node with a GPU

./add



Other CUDA command line programs

• nvidia-smi

– Shows which GPUs are available and gives information about them

– Can be used in scrolling mode when running CUDA programs

• nvprof

– Quick profiler, useful for showing memory transfers between host 

and device.

– More sophisticated profiling can be done with nvvp.

• cuda-memcheck

– Ideal for spotting memory leaks in the CUDA program. Will 

considerably slow execution.

• cuda-gdb

– CUDA debugger
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Further CUDA 

Unified Memory

– Allows allocated data to be read or written by either CPUs or 

GPUs, i.e. no need to explicit copy data.

– Complete implementation available from Pascal P100, while 

Kepler K80 has a limited version.

– Requires some care or could be slower than explicit copying.

– Remember this is really “virtual” memory- data still has to be 

copied over the PCIe link.
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UNIFIED MEMORY

GPU GPU GPU CPU CPU

cudaMallocManaged(&x,N*sizeof(float));



further CUDA

Shared Memory

– Fast, on-chip memory with very low 

latency

– Allocated per thread so all threads in 

the block have access to the shared 

memory.

– Threads can access data in shared 

memory loaded from global memory 

by other threads in the same threads 

block.

– Useful when performing parallel 

reduction (with thread 

synchronization).

– Can be defined at compile or at run 

time - if runtime, added as a third 

parameter to the kernel configuration 

and use extern keyword.
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__kernel__

void kernel(double *x, int n) {

extern __shared__ double sdata[];

int tid=threadIdx.x;

sdata[tid]=0.0 

…

}

kernel<<<1,n,n*sizeof(int)>>>(x,n)

;



further cuda

thread synchronization

– With __syncthreads() 

possible to synchronize 

threads within a thread 

block

– often used with shared 

memory to avoid race 

conditions
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__global__ void reverse(int *d,int n)

{

extern __shared__ int s[];

int t=threadIdx.x;

int tr = n-t-1;

s[t] =d[t];

__syncthreads();

d[t] = s[tr];

}



further cuda - CUDA streams

• CUDA (at least capability 2.x) allows kernels to be launched in 
streams.

• The commands in each stream are executed in order but the 
streams are asynchronous with respect to each other.

• This allows much greater concurrency in the CUDA code.
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stream 1

stream 2

stream 3

serial execution of 
CUDA kernels

concurrent execution of 
kernels in streams



CUDA FORTRAN

• Recent introduction due to collaboration with NVIDIA and PGI. Best current 

implementation of CUDA FORTRAN is with PGI compilers.

• Same concepts of threads and thread blocks as CUDA C (e.g threadidx%x, blockid%y, 

etc..). Kernels are subroutines.

• Variables allocated on the GPU identified by device attribute, i.e. no explicit copy.

• Particularly useful feature is automatic kernel generation by CUF kernels (cf with 

OpenAcc).
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program testramp

use cublas

use ramp

integer, parameter :: N = 20000

real, device :: x(N)

twopi = atan(1.0)*8

call buildramp<<<(N-1)/512+1,512>>>(x,N)

!$cuf kernel do

do i = 1, N

x(i) = 2.0 * x(i) * x(i)

end do

print *,"float(N) = ",sasum(N,x,1)

end program

module ramp

real, constant :: twopi

contains

attributes(global) &

subroutine buildramp(x, n)

integer ::I

i=threadidx%x

….

end subroutine

end 



NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra NVIDIA cuFFT

IMSL Library

Building-block 
Algorithms for 

CUDA

Matrix Algebra 
on GPU and 
Multicore

ArrayFire Matrix 
Computations

Sparse Linear 
Algebra

C++ STL 
Features for 

CUDA

Some GPU-accelerated Libraries


