Radiation imprint of ultra-intense laser heating of solids

M. Garten1,2, A. Huebl1,2, R. Widera1, I. Goethel1,2, L. Obst-Huebl1,2, T. Ziegler1,2, K. Zeil1, T. Cowan1,2, U. Schramm1,2, M. Bussmann1, T. Kluge1

\begin{itemize}
\item 1 Helmholtz-Zentrum Dresden – Rossendorf, Germany
\item 2 Technische Universität Dresden, Germany
\end{itemize}

We acknowledge PRACE for awarding us access to Piz Daint at CSCS, Switzerland.

15th PRACE call, Project ID 2016163983.
Conventional ion acceleration at extreme scales

CERN Large Hadron Collider

- **Circumference**: 27 km
- **Particle energy**: 6.5 TeV
Conventional ion accelerators for medical application

Heidelberg Ion-Beam Therapy Center HIT
- **Construction cost:** 120 million €
- **Particle energy:** 50-430 MeV/nucleon
Laser-driven proton sources for applications

- Breakdown-limit of conventional accelerators at ~50 MV / m
 → long accelerating structures
- Concrete radiation shielding
 → high construction cost

Alternative: Compact, laser-driven ion sources?

- Energy gain: MeV / µm
- Field strength: TV / m instead of ~10 MV / m

"... for their method of generating high-intensity, ultra-short optical pulses."
Laser-driven proton sources for applications

Beams of high dose (~ 1 Gy) + ultra-short (~ 1 ps) duration desirable for

- High-dose radiobiology
- Translational research in radiooncology
- Proton radiography
- Materials research

Target-normal sheath acceleration (TNSA) of Ions

Absorption and electron acceleration
fs - time scale

Electron transport and forming of Debye sheath

Expansion of electron-proton plasmas into vacuum
ps – time scale

Acc. field
E ~ TV/m

Currents of 10^6-10^9 A
C, H, O contaminant

~ nm-µm
Laser-driven ion acceleration - status

What limits the performance?

Proton acceleration – stability in experiment

- “cleaning” of temporal contrast with plasma mirror techniques
 → can shoot thinner targets

- Best performance ≠ usual
- Key could be temporal pulse shape of the **last picosecond**
Laser pulse leading edge

- Measured laser contrast underlies limits in time resolution and dynamic range
- Shot-to-shot fluctuation

- Extract characteristic features
- Understand interaction systematically
Simulation of plasma dynamics with particle-in-cell codes

Particle-in-cell algorithm:

- One complete cycle corresponds to one time step.
- Repeated cycles allow simulating longer time durations.
- Local operations only: well suited for parallelization.

Force Calculation
$$\vec{F} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

Particle Push
$$\vec{p}_{i+1} = \vec{p}_i + \Delta t \cdot \vec{F}$$

Field Evolution
$$\frac{\partial \vec{E}}{\partial t} = -\vec{v} \times \vec{E}$$
$$\frac{\partial \vec{B}}{\partial t} = c^2 (-\mu \vec{j} + \vec{v} \times \vec{B})$$

Current Deposition
$$\vec{j} = \int q \cdot \vec{v} \cdot f(\vec{r}, \vec{v}) dV$$
2D Simulation pre-study at HZDR

- optimal thickness does not shift much with laser contrast

![Graph showing E_{max} (MeV) vs. thickness (d) in nm]

- perfect contrast \rightarrow perfectly sharp target rear surface
 \rightarrow best accelerating shield field

Would 3D simulations show the same trend?
3D simulation campaign on Piz-Daint

- PRACE Tier-0 1.6 million GPU hours
- ~4000³ cells @ 2400 GPUs
- > 10¹⁰ particles
- O(10⁴) GPU hours per simulation
- 13 TB / raw output step

Currently 5th largest cluster in the world & former 1st regarding GPUs until June ‘18

15th PRACE call, Project ID 2016163983.
We acknowledge PRACE for awarding us access to Piz Daint at CSCS, Switzerland.
The Result of 1.6 Million GPU Hours & 4 PB of Data
Maximum proton energy – parameter scan

- Observe **optimum thickness** & **optimum leading edge at non-ideal contrast**

- Completely different from 2D simulation results!

Copper, $d_{\text{opt}} = 17 \text{ nm}$, $T = 60 \text{ fs}$, $E_{\text{Laser}} = 30 \text{ J}$
Acceleration mechanism

- 3D effects in pre-expansion and proton diffusion
- Pre-acceleration due to radiation pressure
Where do the differences come from?

2D and 3D are conceptionally different!

- **Circular** spot
- **Spherical** symmetry

 laser focus
 acc. field

- Equivalent to **line** focus
- **Cylindrical** symmetry
PIConGPU
our HPC work horse to run fast full 3D simulations
Particle-in-Cell Simulations for the Exascale Era

a fully relativistic 3D3V particle-in-cell code developed and maintained at HZDR

- open source development
- runs on any hardware
- scales on the largest clusters
- efficient parallel I/O
- in-situ data analysis avoids bandwidth bottleneck

http://picongpu.hzdr.de
Particle-in-Cell Simulations for the Exascale Era

- open source development
- runs on any hardware
- scales on the larges clusters
- efficient parallel I/O
- in-situ data analysis avoids bandwidth bottleneck
Particle-in-Cell Simulations for the Exascale Era

a fully relativistic 3D3V particle-in-cell code

- open source development
- runs on any hardware
- scales on the largest clusters
- efficient parallel I/O
- in-situ data analysis avoids bandwidth bottleneck
Particle-in-Cell Simulations for the Exascale Era

a fully relativistic 3D3V particle-in-cell code

- open source development
- runs on any hardware
- scales on the large clusters
- efficient parallel I/O
- in-situ data analysis avoids bandwidth bottleneck

![Graph showing effective I/O throughput vs. number of nodes]

Key features:
- **open source development**
- **runs on any hardware**
- **scales on the large clusters**
- **efficient parallel I/O**
- **in-situ data analysis avoids bandwidth bottleneck**
The main issue is throughput

Writing **reduced data** is still required.

K20x GPU (2013), $bw := 6 \text{ GByte} \cdot 10 \text{ Hz steps}$

PCI-Express: 6 GByte/s
- $1 / 10 \text{ th bw}$

I/O per node:
- $1 / 10 \text{ th} \cdot 1 / 200 \text{ th bw}$
 - 42 MByte/s (Titan)
 - 29 MByte/s (PizDaint)

Summit (ORNL, 2018): ratio 4x **“worse”** - gap of 10^4
The main issue is throughput

Writing reduced data is still required.

Compression does not help per se

Huebl A. et al., (2017) ISC High Performance (pp 15-29) DOI: 10.1007/978-3-319-67630-2_2
Reducing complex data requires computing:
This is not only true for simulations but for experiments as well.

- **Complexity (per event/data set/image and community):** Machines + detectors produce more and more complex data, more and more scientific communities are involved in analyzing this data.
Harvest the wealth or particle data: Data reduction via synthetic diagnostics

- Plasma dynamics encoded in emitted radiation
- Bremsstrahlung and synchrotron radiation do not just follow electron distribution
- Would require explicit trajectories → TB / s output … doable but unfeasible
- Instead simulate photons as well and record virtual detector signal
- Develop analytical model to predict signal in experiments
Particle-in-Cell Simulations for the Exascale Era

a fully relativistic 3D3V particle-in-cell code

- open source development
- runs on any hardware
- scales on the larges clusters
- efficient parallel I/O
- in-situ data analysis avoids bandwidth bottleneck

radiation simulation:

live visualization:
Particle-in-Cell Simulations for the Exascale Era

a fully relativistic 3D3V particle-in-cell code

- open source development
- runs on any hardware
- scales on the largest clusters
- efficient parallel I/O
- in-situ data analysis avoids bandwidth bottleneck

throughput equiv. to ~10 TB/s
Conclusion

- Optimum proton energies at non-optimal laser contrast
- Full 3D simulations become inevitable
- Efficient data throughput matters
- Enormous amounts of data require in-situ analysis and visualization
Acknowledgments

This project has been enabled by many people in open-source and open-science communities. Great thanks to the communities and developers of: PIConGPU, Jupyter, yt, the SciPy ecosystem, ADIOS, HDF5, CMake, openPMD, Spack, ...

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 654220.

This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725.

We acknowledge PRACE for awarding us access to Piz Daint at CSCS, Switzerland. 15th PRACE call, Project ID 2016163983.

Thank you to the organizers!