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Who we are

• Based on work in progress
– DeeLeaVER: Deep Learning for Video Emotion Recognition

• Authors: 
– Evan B. Markou,
– Dimitrios Michail,
– Iraklis Varlamis

• Affiliation
– Dept. of Informatics & Telematics,
– Harokopio University of Athens,
– Greece



Emotion Models

• Categorical theory 

– happiness, anger, surprise, sadness, disgust and fear

• Facial Action Coding System 
(EMFACS)
– correlates muscular face 

activities (Action Units) with 
the sentiment expressions

• Dimensional Theory

– valence & arousal



The Problem

• Given a facial expression image
– with its location inside a bigger image

• Determine emotions in terms of both 
categorical and dimensional models



Dataset
• AffectNet contains 1M 

images annotated with
– 11 discrete emotion 

categories  (categorical 
model)

– valence and arousal scores 
in the range of [-1, 1]

• Manually annotated image in 
training and validation sets 
(test set is not released)

Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor, “AffectNet: A New 
Database for Facial Expression, Valence, and Arousal Computation in the Wild”, IEEE 
Transactions on Affective Computing, 2017.

mohammadmahoor.com/affectnet


ML Architecture
• Based on DenseNet [Huang et al. 2017]
• Joint model (categorical and 

valence/arousal)
• The layers outlook follows DenseNet-161 

with growth rate of k = 32. 
• Each dense block possesses a different 

number of layers (6, 12, 24, 16). 
• Also added bottleneck layers  inside each 

dense block, and a compression of 0.5 in 
the transition layers.



Loss Functions

• Categorical -> (weighted) softmax cross-entropy
• Regression -> Concordance Correlation 

Coefficient (CCC)     [Mollahosseinit et al. 2017]
• Train with joint loss function (weighted average, 

50-50)



Optimizer & Learning Rate

• SGDR (Stochastic Gradient Descent with Restarts) 
[Loshchilov & Hutter ‘2016]

• Total 48 epochs -- 2 HPC Nodes x 2 GPUs

• Batch Size 64 -- Initial learning rate 0.025

• The first decay steps were 
executed for 12 epochs

• after that, they continued for 
yet another 12 epochs with 
70% smaller learning rate.

• this policy was followed up 
until the end of the 48 
epochs.



Technology Stack

• TensorFlow 1.10

– at the time 1.12 had some problems on Aris but 
`tf.data.experimental` contained backports

– at the time 2.x was beta

• TFrecords and Data Pipelines

• Horovod for distributed computation
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Horovod

• Horovod [Sergeev & Del Balso ‘2018]

– Open-sourced by Uber

– Uses MPI concepts (size, rank, local rank, allreduce, allgather & broadcast)

– Supports all major frameworks (including TensorFlow)

– Uses the ring-allreduce algorithm created by Baidu

– Uses the nvidia nccl-2 tool to ensure peer-to-peer GPU connectivity

• Distributed Optimizer

– delegates gradient computation to the original optimizer, averages 
gradients using allreduce or allgather, and applies averaged gradients

https://github.com/horovod/horovod


Horovod Usage

• Basic steps from the Horovod website:
1. Run hvd.init() to initialize horovod

2. Pin each GPU to a single process

3. Scale the learning rate by the number of workers
• Effective batch size in synchronous distributed training is scaled by the number of 

workers. An increase in learning rate compensates for the increased batch size.

4. Wrap optimizer in hvd.DistributedOptimizer

5. Broadcast the initial variable states (random weights or checkpoint 
restore) from rank 0 to all other processes

6. Modify code to save checkpoints only on worker with rank 0



Optimizer



Horovod GPU Pinning

• We use data-parallelism
• Make every process see only one GPU, as ‘/gpu:0’



Training



Data Pipelines

• Need to setup data pipelines

– Create tfrecords

– Perform preprocessing

– Data augmentation

– Efficient parallel batch creation

• https://www.tensorflow.org/guide/data_performance



Prefetching

Figures from https://www.tensorflow.org/guide/data_performance



Parallel Data Transformation

Figures from https://www.tensorflow.org/guide/data_performance



Data Preparation

• Use custom python script which converts our dataset into a collection of tfrecord
files.
• Do the reverse when parsing data in the input pipelines



Input Pipeline - Preprocess



Input Pipeline - Augment



Input Pipeline



Best Practices

Best practice summary from Tensorflow: 

• Use the prefetch transformation to overlap the work of a producer and 
consumer.

• Parallelize the data reading transformation using the interleave transformation.
• Parallelize the map transformation by setting the num_parallel_calls argument.
• Use the cache transformation to cache data in memory during the first epoch
• Vectorize user-defined functions passed in to the map transformation
• Reduce memory usage when applying the interleave, prefetch, and shuffle 

transformations.

https://www.tensorflow.org/guide/data_performance#best_practice_summary


Execution on Aris

• Total 48 epochs

• 2 HPC Nodes x 2 GPUs
– Each node Intel Xeon 

E5-2660v3, 64 GB

– Each node 2 GPUs 
Nvidia K40

• Batch Size 64 -- Initial 
learning rate 0.025

• Data-parallelism



48 Training Epochs
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Results
AffectNet This work

Accuracy 0.58 0.5557

F1-score 0.58 0.5551

CCC-valence 0.541 0.5954

CCC-arousal 0.450 0.5358

RMSE-valence 0.394 0.42

RMSE-arousal 0.402 0.39

CORR-valence (Pearson CC) 0.602 0.604

CORR-arousal (Pearson CC) 0.539 0.545

SAGR-valence (Sign 
Agreement Metric)

0.728 0.604

SAGR-arousal (Sign 
Agreement Metric)

0.670 0.545

Not exactly comparable, as 
we are running on the 
validation dataset. 

Test dataset was never 
published.



Future & Ongoing Work

• Train 3dconv for video (frames)

• Use the aff-wild dataset

• Use best frozen model for images.

• Feed layers before final classifiers to 3dconv layer.

• Train on ML node on Aris

– 2 Intel E5-2698v4 (20 cores each), 512GB, 8 GPUs Nvidia V100



The End

• Thank you for your attention

• Questions?

• Suggestions?


