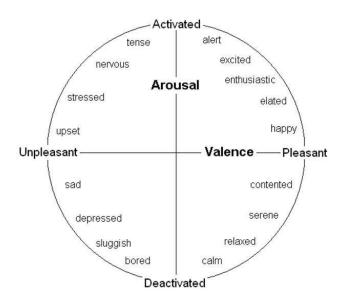
Training a CNN for emotion detection

Talk given at course Machine Learning in HPC@GRNET

Dimitrios Michail Dept. of Informatics & Telematics Harokopio University of Athens, Greece michail [at] hua.gr


Who we are

- Based on work in progress
 - DeeLeaVER: Deep Learning for Video Emotion Recognition
- Authors:
 - Evan B. Markou,
 - Dimitrios Michail,
 - Iraklis Varlamis
- Affiliation
 - Dept. of Informatics & Telematics,
 - Harokopio University of Athens,
 - Greece

Emotion Models

- Categorical theory
 - happiness, anger, surprise, sadness, disgust and fear
- Dimensional Theory

 valence & arousal
- Facial Action Coding System (EMFACS)
 - correlates muscular face activities (Action Units) with the sentiment expressions

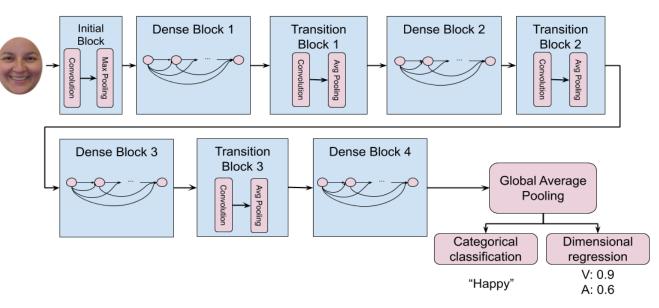
The Problem

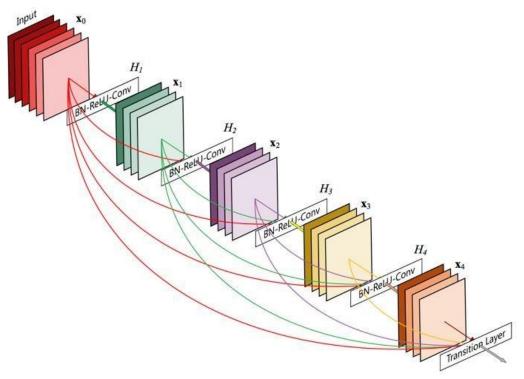
- Given a facial expression image
 - with its location inside a bigger image

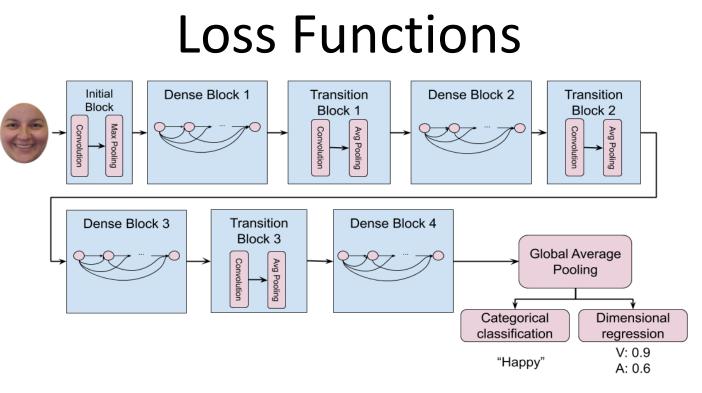
• Determine emotions in terms of both categorical and dimensional models

Dataset

- <u>AffectNet</u> contains 1M images annotated with
 - 11 discrete emotion categories (categorical model)
 - valence and arousal scores in the range of [-1, 1]
- Manually annotated image in training and validation sets (test set is not released)

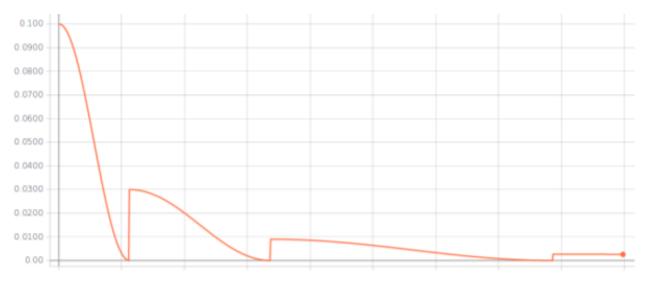

nd Con	11-11			(IE)
000	Ser and a ser a se		THE.	and a state
0.0	24	and the second	P. S.	4.1
and the	25	a.d	AL O	
	tor	610	35	
-A	610	A	(Re)	10
(Contraction of the second se	25	3	E	1


Neutral	75374
Нарру	134915
Sad	25959
Surprise	14590
Fear	6878
Disgust	4303
Anger	25382
Contempt	4250
None	33588
Uncertain	12145
Non-Face	82915
Total	420299


Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor, "AffectNet: A New Database for Facial Expression, Valence, and Arousal Computation in the Wild", IEEE Transactions on Affective Computing, 2017.

ML Architecture

- Based on DenseNet [Huang et al. 2017]
- Joint model (categorical and valence/arousal)
- The layers outlook follows DenseNet-161 with growth rate of k = 32.
- Each dense block possesses a different number of layers (6, 12, 24, 16).
- Also added bottleneck layers inside each dense block, and a compression of 0.5 in the transition layers.



- Categorical -> (weighted) softmax cross-entropy
- Regression -> Concordance Correlation Coefficient (CCC) [Mollahosseinit et al. 2017]
- Train with joint loss function (weighted average, 50-50)

Optimizer & Learning Rate

- SGDR (Stochastic Gradient Descent with Restarts) [Loshchilov & Hutter '2016]
- Total 48 epochs -- 2 HPC Nodes x 2 GPUs
- Batch Size 64 -- Initial learning rate 0.025

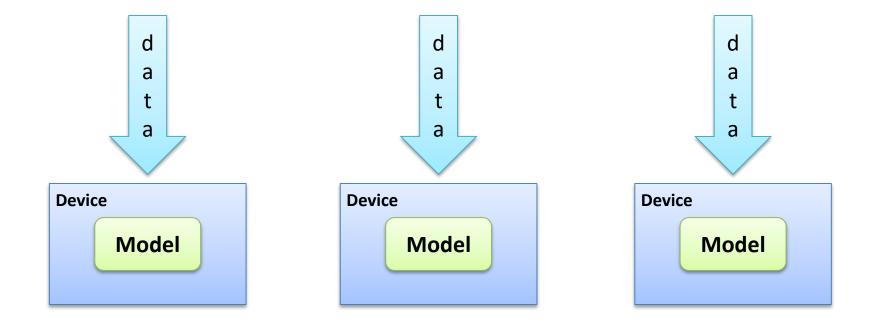

- The first decay steps were executed for 12 epochs
- after that, they continued for yet another 12 epochs with 70% smaller learning rate.
- this policy was followed up until the end of the 48 epochs.

Figure 4. SGDR learning rate scheduling policy

Technology Stack

- TensorFlow 1.10
 - at the time 1.12 had some problems on Aris but `tf.data.experimental` contained backports
 - at the time 2.x was beta
- TFrecords and Data Pipelines
- Horovod for distributed computation

Data Parallelism

Horovod

- <u>Horovod</u> [Sergeev & Del Balso '2018]
 - Open-sourced by Uber
 - Uses MPI concepts (size, rank, local rank, allreduce, allgather & broadcast)
 - Supports all major frameworks (including TensorFlow)
 - Uses the ring-allreduce algorithm created by Baidu
 - Uses the nvidia nccl-2 tool to ensure peer-to-peer GPU connectivity
- Distributed Optimizer
 - delegates gradient computation to the original optimizer, averages gradients using allreduce or allgather, and applies averaged gradients

Horovod Usage

- Basic steps from the Horovod website:
 - 1. Run hvd.init() to initialize horovod
 - 2. Pin each GPU to a single process
 - 3. Scale the learning rate by the number of workers
 - Effective batch size in synchronous distributed training is scaled by the number of workers. An increase in learning rate compensates for the increased batch size.
 - 4. Wrap optimizer in hvd.DistributedOptimizer
 - 5. Broadcast the initial variable states (random weights or checkpoint restore) from rank 0 to all other processes
 - 6. Modify code to save checkpoints only on worker with rank 0

Optimizer

def sgd_w_optimizer(loss, lr, use_nesterov, momentum, params):

Use the SGD with Momentum optimizer (optionally with nesterov) to minimize the loss function.

```
:param loss: The calculated loss function based on the true labels and logits to be passed in SGD optimizer
:param lr: The learning rate. Could be fixed or use a learning rate annealing scheduler for a decayed learning rate
:param momentum: The momentum value
:param use_nesterov: A boolean value that use nesterov optimizer or not
:param params: The json hyperparameter file
:return: the train operation to be passed into session for execution
"""
# learning rate scheduler on effective learning rate
weight_decay_multiplier = lr / params.initial_learning_rate * hvd.size() # equal with learning rate multiplier
weight_decay = params.weight_decay * weight_decay_multiplier
```

```
optimizer = tf.contrib.opt.MomentumWOptimizer(weight_decay, lr, momentum, use_nesterov=use_nesterov)
global_step = tf.train.get_global_step()
```

```
# Add Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)
```

```
# Batch norm requires update ops to be added as a dependency to the train_op
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
    # Minimize the loss of the list of variables in the graph under the key GraphKeys.TRAINABLE_VARIABLES
    train_op = optimizer.minimize(loss, global_step=global_step)
```

```
return train_op
```

Horovod GPU Pinning

```
# Horovod: initialize Horovod.
hvd.init()
```

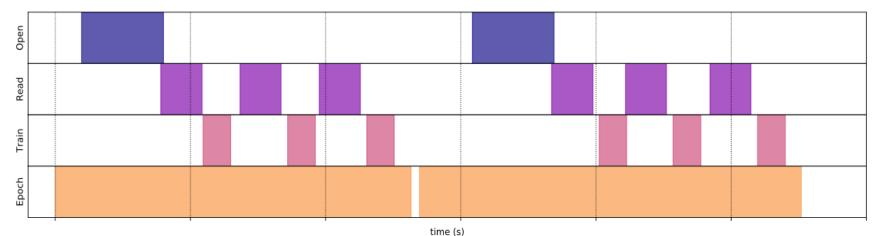
```
# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))
```

- We use data-parallelism
- Make every process see only one GPU, as '/gpu:0'

Training

```
# Assume data parallelism and GPU pinning
device = '/qpu:0'
# define the model layers
logits = build model(training, trainable, inputs, params)
with tf.device(device):
    # ... code to decouple predictions
    # Define loss for every case (training and validation)
    va loss = valence arousal ccc loss(dim sep labels, dim sep predictions)
    if training:
        # Define optimiser for training
        global step = tf.train.get or create global step()
        num steps per epoch = int(math.ceil(params.train size / params.batch size / hvd.size()))
        with tf.device(device):
            with tf.name scope(name='L Rate Logic'):
                # Use the effective learning rate from [Goyal et al. 2017]
                # Equivalent to effective lr = params.init lr * (gpus*batchsize/32)
                effective lr = params.initial learning_rate * hvd.size()
                lr decayed = tf.train.cosine decay restarts(learning_rate=effective_lr, global_step=global_step,
                                                            first decay steps=params.num epochs * num steps per epoch,
                                                            t mul=1.0, m mul=0.7, alpha=0.0)
                learning rate = lr decayed
```

Define training step that minimizes the loss using SGD with Momentum (optional Nesterov) optimiser train_op = sgd_w_optimizer(loss=va_loss, lr=learning_rate, use_nesterov=True, params=params)


... code for metrics, summaries and update ops

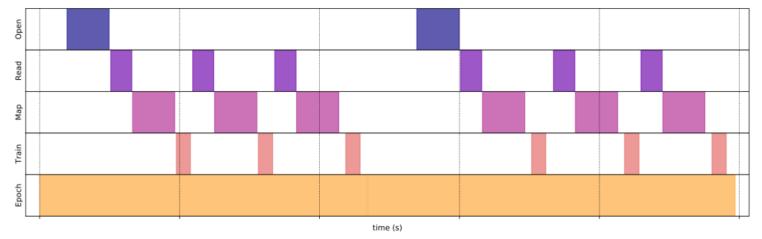
Data Pipelines


- Need to setup data pipelines
 - Create tfrecords
 - Perform preprocessing
 - Data augmentation
 - Efficient parallel batch creation
- https://www.tensorflow.org/guide/data_performance

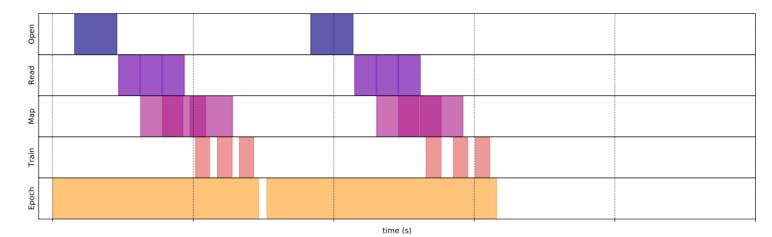
Prefetching

Naive

Prefetched



time (s)


Figures from https://www.tensorflow.org/guide/data_performance

Parallel Data Transformation

Sequential map

Parallel map

Figures from https://www.tensorflow.org/guide/data_performance

Data Preparation

```
def convert to example(filename, image buffer, expression label,
 valence label, arousal label, height, width):
    colorspace = 'RGB'
    channels = 3
    image format = 'jpg'
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': int64 feature(height),
        'image/width': int64 feature(width),
        'image/class/expression label': int64 feature(expression label),
        'image/class/valence label': float feature(valence label),
        'image/class/arousal label': float feature(arousal label),
        'image/colorspace': bytes feature(colorspace),
        'image/channels': int64 feature(channels),
        'image/format': bytes feature(image format),
        'image/filename': bytes feature(os.path.basename(filename)),
        'image/encoded': bytes feature(image buffer)
   }))
    return example
```

• Use custom python script which converts our dataset into a collection of tfrecord files.

• Do the reverse when parsing data in the input pipelines

Input Pipeline - Preprocess

```
def _preprocess_data(image, exp_label, dim_label):
    """
    Image processing for training
    :param image: Tensor with shape [batch, height, width, channels]
    :return: processed image
    """
    image = tf.image.per_image_standardization(image)
    # Make sure that the image is still in [0, 1]
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image, exp label, dim label
```

Input Pipeline - Augment

```
def augment data(image, exp label, dim label, image size):
    Image augmentation for training
    Apply the following operations:
        - Horizontally flip the image with probability 0.5
        - Rotate the image with a random angle taken by a uniform
          distribution from range (-20, 20)
    :param image: Tensor with shape [batch, height, width, channels]
    :return: augmented image
    0.0.0
    image = tf.image.random flip left right(image)
    image = tf.contrib.image.rotate(image, angles=math.radians(
                  int(random.uniform(-20, 20))),
                  interpolation='BILINEAR')
    tx = random.uniform(-0.1, 0.1) * image size
    ty = random.uniform(-0.1, 0.1) * image size
    translation matrix = [1, 0, -tx, 0, 1, -ty, 0, 0]
    image = tf.contrib.image.transform(image, transforms=translation matrix,
                                       interpolation='BILINEAR')
```

return image, exp_label, dim_label

Input Pipeline

```
1with tf.variable scope(name or scope='Train Dataset'):
      files = tf.data.Dataset.list files(file pattern=filepath + '*.tfrecord',
 2
                                         shuffle=False)
 3
 4
      files = files.shard(num shards=hvd.size(), index=hvd.rank())
      # number of files divided by number of workers
 5
      files = files.shuffle(buffer size=240 // hvd.size())
 6
      dataset = files.apply(
 7
          # tf.data.experimental.parallel interleave for tensorflow 1.12.0 version
 8
 9
          transformation func=tf.contrib.data.parallel interleave(
            lambda f: tf.data.TFRecordDataset(f),
10
            cycle length=multiprocessing.cpu count() // hvd.local size(),
11
12
            block length=1, sloppy=True,
13
            buffer output elements=2,
14
            prefetch input elements=2*(multiprocessing.cpu count() // hvd.local size()))
      dataset = dataset.map(parse fn, num parallel calls=
15
16
                              multiprocessing.cpu count() // hvd.local size())
17
      dataset = dataset.shuffle(buffer size=10000, reshuffle each iteration=True)
18
      dataset = dataset.map(preprocess fn, num parallel calls=
19
                              multiprocessing.cpu count() // hvd.local size())
      # tf.data.experimental.map and batch for tensorflow 1.12.0 version
20
      dataset = dataset.apply(tf.contrib.data.map and batch(augment fn,
21
                                batch size=params.batch size, num parallel calls=
22
23
                                    multiprocessing.cpu count() // hvd.local size()))
24
      # tf.data.experimental.copy tp device for tensorflow 1.12.0 version
25
      dataset = dataset.apply(tf.contrib.data.copy to device(target device='/gpu:0'))
      # make sure you always have at least one batch ready to serve
26
      # buffer size = None or -1 | This is the sentinel for auto-tuning.
27
      dataset = dataset.prefetch(buffer size=-1)
28
```

Best Practices

Best practice summary from Tensorflow:

- Use the prefetch transformation to overlap the work of a producer and consumer.
- Parallelize the data reading transformation using the interleave transformation.
- Parallelize the map transformation by setting the num_parallel_calls argument.
- Use the cache transformation to cache data in memory during the first epoch
- Vectorize user-defined functions passed in to the map transformation
- Reduce memory usage when applying the interleave, prefetch, and shuffle transformations.

Execution on Aris

#!/bin/bash

#SBATCH -- job-name=emotions # Job name #SBATCH -- output=emotions.%j.out # Stdout (%j expands to jobId) #SBATCH --error=emotions.%j.err # Stderr (%j expands to jobId) # Number of tasks(processes) #SBATCH --ntasks=4 #SBATCH --nodes=2 # Number of nodes requested #SBATCH --ntasks-per-node=2 # Tasks per node #SBATCH --gres=gpu:2 # GPUs per node -- must be equal to ntasks per node #SBATCH --cpus-per-task=10 # Threads per task #SBATCH -- time=40:00:00 # walltime find approximate time #SBATCH --mem=56G # memory per NODE #SBATCH --partition=qpu # Partition # Replace with your system project #SBATCH --account=foo #SBATCH --export=ALL,HOROVOD CYCLE TIME=1,NCCL DEBUG=INF0,HOROVOD MPI THREADS DISABLE=1 export I MPI FABRICS=shm:dapl

if [x\$SLURM_CPUS_PER_TASK == x]; then
 export OMP_NUM_THREADS=1
else
 export OMP_NUM_THREADS=\$SLURM_CPUS_PER_TASK
fi

change dir to source code
cd /users/emotions/src

load necessary modules
module purge
module load gnu/6.4.0
module load intel/15.0.3
module load intelmpi/5.0.3
module load java/1.8.0
module load cuda/9.2.148
module load tensorflow/1.10.1gpu

train

srun python train.py

- Total 48 epochs
- 2 HPC Nodes x 2 GPUs
 - Each node Intel Xeon
 E5-2660v3, 64 GB
 - Each node 2 GPUs
 Nvidia K40
- Batch Size 64 -- Initial learning rate 0.025
- Data-parallelism

48 Training Epochs

Metrics on eval dataset per epoch

Results

	AffectNet	This work
Accuracy	0.58	0.5557
F1-score	0.58	0.5551
CCC-valence	0.541	0.5954
CCC-arousal	0.450	0.5358
RMSE-valence	0.394	0.42
RMSE-arousal	0.402	0.39
CORR-valence (Pearson CC)	0.602	0.604
CORR-arousal (Pearson CC)	0.539	0.545
SAGR-valence (Sign Agreement Metric)	0.728	0.604
SAGR-arousal (Sign Agreement Metric)	0.670	0.545

Not exactly comparable, as we are running on the validation dataset.

Test dataset was never published.

Future & Ongoing Work

- Train 3dconv for video (frames)
- Use the aff-wild dataset
- Use best frozen model for images.
- Feed layers before final classifiers to 3dconv layer.
- Train on ML node on Aris
 - 2 Intel E5-2698v4 (20 cores each), 512GB, 8 GPUs Nvidia V100

The End

- Thank you for your attention
- Questions?
- Suggestions?