
Training a CNN for emotion detection

Talk given at course
Machine Learning in HPC@GRNET

Dimitrios Michail
Dept. of Informatics & Telematics

Harokopio University of Athens, Greece
michail [at] hua.gr

Who we are

• Based on work in progress
– DeeLeaVER: Deep Learning for Video Emotion Recognition

• Authors:
– Evan B. Markou,
– Dimitrios Michail,
– Iraklis Varlamis

• Affiliation
– Dept. of Informatics & Telematics,
– Harokopio University of Athens,
– Greece

Emotion Models

• Categorical theory

– happiness, anger, surprise, sadness, disgust and fear

• Facial Action Coding System
(EMFACS)
– correlates muscular face

activities (Action Units) with
the sentiment expressions

• Dimensional Theory

– valence & arousal

The Problem

• Given a facial expression image
– with its location inside a bigger image

• Determine emotions in terms of both
categorical and dimensional models

Dataset
• AffectNet contains 1M

images annotated with
– 11 discrete emotion

categories (categorical
model)

– valence and arousal scores
in the range of [-1, 1]

• Manually annotated image in
training and validation sets
(test set is not released)

Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor, “AffectNet: A New
Database for Facial Expression, Valence, and Arousal Computation in the Wild”, IEEE
Transactions on Affective Computing, 2017.

mohammadmahoor.com/affectnet

ML Architecture
• Based on DenseNet [Huang et al. 2017]
• Joint model (categorical and

valence/arousal)
• The layers outlook follows DenseNet-161

with growth rate of k = 32.
• Each dense block possesses a different

number of layers (6, 12, 24, 16).
• Also added bottleneck layers inside each

dense block, and a compression of 0.5 in
the transition layers.

Loss Functions

• Categorical -> (weighted) softmax cross-entropy
• Regression -> Concordance Correlation

Coefficient (CCC) [Mollahosseinit et al. 2017]
• Train with joint loss function (weighted average,

50-50)

Optimizer & Learning Rate

• SGDR (Stochastic Gradient Descent with Restarts)
[Loshchilov & Hutter ‘2016]

• Total 48 epochs -- 2 HPC Nodes x 2 GPUs

• Batch Size 64 -- Initial learning rate 0.025

• The first decay steps were
executed for 12 epochs

• after that, they continued for
yet another 12 epochs with
70% smaller learning rate.

• this policy was followed up
until the end of the 48
epochs.

Technology Stack

• TensorFlow 1.10

– at the time 1.12 had some problems on Aris but
`tf.data.experimental` contained backports

– at the time 2.x was beta

• TFrecords and Data Pipelines

• Horovod for distributed computation

Data Parallelism

Model

Device

d
a
t
a

Model

Device

d
a
t
a

Model

Device

d
a
t
a

Horovod

• Horovod [Sergeev & Del Balso ‘2018]

– Open-sourced by Uber

– Uses MPI concepts (size, rank, local rank, allreduce, allgather & broadcast)

– Supports all major frameworks (including TensorFlow)

– Uses the ring-allreduce algorithm created by Baidu

– Uses the nvidia nccl-2 tool to ensure peer-to-peer GPU connectivity

• Distributed Optimizer

– delegates gradient computation to the original optimizer, averages
gradients using allreduce or allgather, and applies averaged gradients

https://github.com/horovod/horovod

Horovod Usage

• Basic steps from the Horovod website:
1. Run hvd.init() to initialize horovod

2. Pin each GPU to a single process

3. Scale the learning rate by the number of workers
• Effective batch size in synchronous distributed training is scaled by the number of

workers. An increase in learning rate compensates for the increased batch size.

4. Wrap optimizer in hvd.DistributedOptimizer

5. Broadcast the initial variable states (random weights or checkpoint
restore) from rank 0 to all other processes

6. Modify code to save checkpoints only on worker with rank 0

Optimizer

Horovod GPU Pinning

• We use data-parallelism
• Make every process see only one GPU, as ‘/gpu:0’

Training

Data Pipelines

• Need to setup data pipelines

– Create tfrecords

– Perform preprocessing

– Data augmentation

– Efficient parallel batch creation

• https://www.tensorflow.org/guide/data_performance

Prefetching

Figures from https://www.tensorflow.org/guide/data_performance

Parallel Data Transformation

Figures from https://www.tensorflow.org/guide/data_performance

Data Preparation

• Use custom python script which converts our dataset into a collection of tfrecord
files.
• Do the reverse when parsing data in the input pipelines

Input Pipeline - Preprocess

Input Pipeline - Augment

Input Pipeline

Best Practices

Best practice summary from Tensorflow:

• Use the prefetch transformation to overlap the work of a producer and
consumer.

• Parallelize the data reading transformation using the interleave transformation.
• Parallelize the map transformation by setting the num_parallel_calls argument.
• Use the cache transformation to cache data in memory during the first epoch
• Vectorize user-defined functions passed in to the map transformation
• Reduce memory usage when applying the interleave, prefetch, and shuffle

transformations.

https://www.tensorflow.org/guide/data_performance#best_practice_summary

Execution on Aris

• Total 48 epochs

• 2 HPC Nodes x 2 GPUs
– Each node Intel Xeon

E5-2660v3, 64 GB

– Each node 2 GPUs
Nvidia K40

• Batch Size 64 -- Initial
learning rate 0.025

• Data-parallelism

48 Training Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

M
et

ri
c

Epochs

Metrics on eval dataset per epoch

accuracy f1 CCC arousal CCC valence

Results
AffectNet This work

Accuracy 0.58 0.5557

F1-score 0.58 0.5551

CCC-valence 0.541 0.5954

CCC-arousal 0.450 0.5358

RMSE-valence 0.394 0.42

RMSE-arousal 0.402 0.39

CORR-valence (Pearson CC) 0.602 0.604

CORR-arousal (Pearson CC) 0.539 0.545

SAGR-valence (Sign
Agreement Metric)

0.728 0.604

SAGR-arousal (Sign
Agreement Metric)

0.670 0.545

Not exactly comparable, as
we are running on the
validation dataset.

Test dataset was never
published.

Future & Ongoing Work

• Train 3dconv for video (frames)

• Use the aff-wild dataset

• Use best frozen model for images.

• Feed layers before final classifiers to 3dconv layer.

• Train on ML node on Aris

– 2 Intel E5-2698v4 (20 cores each), 512GB, 8 GPUs Nvidia V100

The End

• Thank you for your attention

• Questions?

• Suggestions?

