
Neural 
Architecture 
Search in ARIS 
(Project DNAD)

George Kyriakides
ge.kyriakides@uom.edu.gr
Konstantinos Margaritis
kmarg@uom.gr

mailto:ge.kyriakides@uom.edu.gr
mailto:kmarg@uom.gr


Deep Learning is Great



But Complicated



Enter Neural Architecture Search (NAS)

● Utilizing optimization methods in order to find neural network architectures

● Global search space: search for the entire network structure (Exploration)

● Cell search space: search for repeating blocks with a fixed macro-structure (Exploitation)



Global Search

● Can “invent” new architectures (in theory)

● Can be applied to new domains

● Less efficient at finding the best architecture



Cell Search

● Leverages previous human experience

● Better at finding state-of-the-art networks

● More difficult to “innovate”

● Requires prior knowledge about 

well-performing skeletons



Optimization Methods

● Genetic algorithms (CoDeepNEAT)

● Particle swarm optimization (DeepSwarm)

● Reinforcement learning (NAS)

● Sequential model-based optimization (SMBO)

● Gradient Methods (DARTS)

● Many more…



Similarities

● A number of individual networks are evaluated (train/test) ← Very Expensive

● Based on the evaluations, the algorithm selects new networks ← Not so expensive

● Until a stopping criterion is met



Speed-ups

● Algorithmic
○ Evaluate less accurately (Model/Data/Epoch Augmentations)
○ Evaluate less networks (More efficient algorithms)
○ Create predictive models (Bayesian optimization)

● Technical
○ Use faster hardware (GPUs, TPUs)
○ Use more hardware (MPI, Horovood)



Technical Speedups

● MPI (Algorithm Parallelization)
○ Distribute the population amongst N processes (speedup of roughly N) - GA, ES
○ (A)synchronously update a RL controller - A3C, A2C, REINFORCE
○ (A)synchronously update a predictive model - BO

● Horovod (Evaluation Parallelization)
○ Distribute model training amongst N processes (speedup less than N)
○ Depends on networking speed, model size, dataset size
○ Potentially train larger models



Using ARIS



Some of the Problems Encountered

● Pytorch does not release memory, even if it is not in use (nvidia-smi does not reflect actual 

usage.

● Using torch.cuda.empty_cache() on a single-node, multi-gpu instance will allocate extra 

memory on gpu0 and bind subsequent cuda calls to gpu0.

● Load imbalance: Idle workers due to different network sizes and complexities.

● A lot of invalid architectures in global search.



Experiments Conducted (1)

● In-depth study on the effect of utilizing a smaller number of epochs and various 

optimizers to evaluate candidate architectures



Experiments Conducted (2)

● Regularized evolution of convolutional networks for the Fashion-MNIST dataset on a 

global search space.



Observations

● Selecting and defining search space is the most important aspect of NAS, in terms of end 

results (Global/Cell, available layer options, regularizations etc.)

● Utilizing augmentation techniques can improve search times, as well as the result quality.

● A high discrepancy between search and final training epochs significantly reduces the 

correlation between relative architecture performance.

● When arbitrary architectures are generated, the way that layers are merged and how the 

dimensions are preserved is very important for the final result. 
○ Zero-padding or interpolation of layer results and pixel-wise sums works for height/width 

preservation.
○ 1x1 convolutions work for channels, but fixing the number of channels is better when limited 

resources are available.



Thank You!


