
Best Practices in ML

Dr. Dimitris Dellis
ntell [at] grnet.gr

GRNET

Athens, 11­12 June 2020

1/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Many files I

▶ Typical in training phase, many files are used (commonly
images, text, sound, video etc.)

▶ In genereal inefficient for large numbers. Typical cases use
order of millions files.

▶ Even super fast parallel filesystems can not cope with
many jobs using these numbers.

▶ Possibilities for Performance Enhancement.
▶ Local Scratch (SSD ?)

▶ Have your files in few tarballs, zip etc.

2/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Many files II

▶ Inside Job script, copy the tarball(s) to the machine’s
scratch, untar, use them, remove them. All input/output still
in your permanent workspace.

▶ Pros : Faster but at least a factor of two, no shared
filesystem load, no network etc.

▶ Cons : Local scratch that is SSD is not always available.
Limited to single node runs.

3/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Many files III

▶ Put all files in few large files from where you can read from
(typically) Python.
If the file format supports parallel access much better.
Keep these large files in your workspace.
No significant overhead for parallel filesystem ­ no meta
data operations, only streaming. One mature, well tested
solution is the use of HDF5 format used in many similar
situations (Climate science).

4/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



HDF5 I

▶ Before run, pack data in (one file as example) HDF5, using
Python, probably resize or other operations before store in
case of images.

▶ Do not forget after HDF5 creation to remove (if you have
them in zip/tar, or pack in tar/zip)

▶ Switch to interactive source code.

5/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



HDF5 I

▶ Some results :
▶ 1000 images

Operation Files on Disk HDF5
Read 13.56 1.09
Write 8.59 0.90

6/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Batch size
▶ GPU (and CPU) memory is limited.
▶ Batches of processing. Probably you already use it.
▶ Calculate maximum batch size from available memory and

your data size.
▶ Remember : Offloading data to gpu has maximum

performance when you send small number of batches of
size almost up to fill the memory.

▶ GPUs are very fast and they need enough data to work
with efficiency.
Transfer to/from GPU is expensive.
Many small transfers : Lower bandwidht, High percentage
of GPU idle due to no data to work with.

7/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Parallelization I

▶ Check parallelization frameworks, select mature, well
tuned ­ not the first from internet.
▶ For Single node, more frameworks are available, not all

appropriate for HPC, not all efficient.
▶ Many ignore the concept of allocated resources and try to

use whole node cores. It may be acceptable on a desktop
but not for shared resources.

▶ Limited frameworks that work efficiently with more than one
node.

▶ Many of these use master/slave architecture, using sockets
on usually ethernet ­ ignoring the high speed interfaces that
should be used in HPC environment.

8/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Parallelization II

▶ Horovod looks to be mature enough, it uses MPI for IPC
communication (that uses shared memory for intra and
High speed for internode communication.

▶ Wheels vs build, drivers compilers
▶ With Python there are few possibilities to install packages.
▶ pip : looks for package, downloads, install.

▶ It is fast and easy.
▶ Two types of packages : Source that are compiled on install

machine or wheel precompiled packages.
▶ One should be lucky enough in order to work. If it works,

probably with performance penalty due to portability.
▶ Install from Source.

9/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Parallelization III

▶ Not the easiest way.
▶ You compile with software stack existing on machine,

optimized for this machine.
▶ Probably you need to specify the compiler flags and

probably library paths to efficiently use the hardware.
▶ Speed up GPU Feed to efficiently use resources

▶ Use multiprocessing to use GPU in parallel

10/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Containers
▶ What Containers are ?
▶ Well known containers : Docker and Singularity.
▶ Pros and Cons of Docker and Singularity.
▶ Use of singularity is probably the only portable choice.
▶ And then ?
▶ You have the pay the performance fee for portability.
▶ A fully portable image is agnostic for existing hardware, it

should run on old cpus, with recent cpu features (that give
the performance of recent cpus) ignored, use the maximum
portable compute capability and parameters of GPUs,

▶ Typically, less than half the performance of native builds.
▶ Container images optimized for recent hardware, probably

do not run on older hardware.
11/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu



Use of resources

▶ More than 1 GPU : Doing nothing in code usually does
nothing on others except reserve.

▶ There are many ways and tools to split work across gpus.
▶ nvidia­smi or tensorboard to check gpu usage and tune

details of use.

12/12 Prace PTC, GRNET, 11­12 June 2020 www.prace­ri.eu


