
1 www.prace-ri.euPresentation title

Everything You Always Wanted to Know
About Deep Learning Frameworks *
(*But Were Afraid to Ask)

PhD Candidate, Business Analytics Laboratory
Athens University of Economics & Business

Konstantina Dritsa

2 www.prace-ri.euPresentation title

o Introduction to Deep Learning

o Theoretical introduction to Deep Learning Frameworks

o Toy implementation on Keras

o Practical comparison of deep learning implementations between

Keras, Tensorflow, Pytorch

Roadmap

3 www.prace-ri.euPresentation title

Artificial Intelligence

Machine Learning

Deep Learning

Symbolic AI

Classical
programming

Rules

Data
Answers

Machine Learning

Classical
programming

Data

Answers
Rules

AI vs ML vs DL

4 www.prace-ri.euPresentation title

AI vs ML vs DL
Hierarchical Feature Abstraction

Artificial Intelligence

Machine Learning

Deep Learning

Photo from Francois Chollet’s book
“Deep Learning with Python”

5 www.prace-ri.euPresentation title

AI vs ML vs DL

Artificial Intelligence

Machine Learning

Deep Learning

Hierarchical Feature Abstraction

Neural network: structured sequence of algebraic
operations on vectors and matrices

6 www.prace-ri.euPresentation title

a

good

talk

avg.

⋅ sum()

• A simple example : Predict how positive is a given sentence

Score=

7.6
Truth=

9.4

←

Loss(pred, truth)

w

𝑣𝑒𝑐 𝑣𝑒𝑐 − α 𝜕𝑙𝑜𝑠𝑠
𝜕𝑣𝑒𝑐

←𝑤 𝑤− α 𝜕𝑙𝑜𝑠𝑠
𝜕𝑤

Deep Learning

7 www.prace-ri.euPresentation title

Gradient Descent for Backpropagation

←𝑤 𝑤− α 𝜕𝑙𝑜𝑠𝑠
𝜕𝑤

Optimization algorithm that minimizes a loss function,
moving repeatedly to the steepest descent.

8 www.prace-ri.euPresentation title

Perceptron

▶ With step function -> linear classifier (binary)

▶ Produces a single binary output (0 or 1)

▶ Divides the space with a straight line in two segments

9 www.prace-ri.euPresentation title

Deep Learning: Neural network anatomy

▶ Layers: collection of neurons

▶ Neurons: nodes of mathematical computations

▶ Connection: weighted relationship

between nodes of subsequent layers

▶ Weights of the connections

▶ H1: hidden node

▶ HA1: value of H1 passed through the

activation function

▶ Accordingly O1, OA1, B1…

10 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

11 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Model capacity: How many layers and nodes

▶ The more the parameters, the larger the memorization capacity

Rule-of-thumb methods to choose size:

• The number of hidden neurons should be between

the size of the input layer and the size of the output layer.

• The number of hidden neurons should be 2/3 the

size of the input layer, plus the size of the output layer.

• The number of hidden neurons should be less than

twice the size of the input layer.

12 www.prace-ri.euPresentation title

The real challenge: generalization

“Travel is fatal to prejudice,
bigotry, and narrow-mindedness”
- Mark Twain

Generalization refers to your
model's ability to make valid
predictions on new, previously
unseen data.

13 www.prace-ri.euPresentation title

The real challenge: generalization

Underfitting:

Too few neurons to learn complex representations in a complicated data set.

Overfitting:

Too many neurons or too many epochs that lead to the memorization of the training data.

Pareto split principal:

- 20% test set

- 80% for training and validation

(from which 80% for training and 20% for validation)

14 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Loss function: distance between prediction and

ground truth

▶ Multiple loss functions.

▶ Choose the right loss function for the task:

Problem Loss Functions

Regression Mean Squared Error Loss, Mean Squared
Logarithmic Error Loss, Mean Absolute
Error Loss

Binary
Classification

Binary Cross-Entropy, Hinge Loss,
Squared Hinge Loss

Multi-Class
Classification

Multi-Class Cross-Entropy Loss, Sparse
Multiclass Cross-Entropy Loss, Kullback
Leibler Divergence Loss

15 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Sigmoid. S-shaped curve that ranges between 0 and 1.

Squashes arbitrary values into the [0,1] interval,

something that can be interpreted as a probability.

▶ Tanh: S-shaped curve that ranges

between -1 and 1.

▶ Rectified Linear Unit (ReLU): Zero for

negative x values. More computationally effective.

▶ Softmax: outputs probabilities. Ideal for

classification. The outputs should sum to 1.

16 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Optimizer: Determines how the network will be updated based
on the loss function.

▶ It implements a specific variant of stochastic gradient descent
(SGD).

▶ Popular gradient descent optimization algorithms:
q Adam — Adaptive Moment Estimation
q AdaMax — variant of adam
q RMSProp — Root Mean Square Propagation
q Adagrad — Adaptive Gradient Algorithm
q Adadelta — extension of Adagrad
q Nesterov accelerated gradient
q etc.

17 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

18 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Epoch: Each iteration over all the training data.

▶ Too many epochs -> Overfitting

▶ Take into consideration the loss in the validation

dataset

19 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Training step: Each epoch consists of training steps. A training step is each

forward propagation & backpropagation (parameter update)

▶ Batch Gradient Descent: All the training data are presented to the model at

once. Each epoch = one training step.

Computationally inefficient for large datasets.

▶ Stochastic Gradient Descent: Only one random sample of the training data

is presented to the model at each training step. Each epoch = many training

steps.

▶ Mini-batch Stochastic Gradient Descent: At each training step, present to

the model a batch of the data.

▶ Parameter updates are made once for each batch.

20 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Dropout: applied to a layer, it consists of randomly dropping out

(setting to zero) a number of output features of the layer during

training.

▶ It forces the neural net to “not rely” on any specific node, by making

the training process noisy.

▶ Thus, it helps reduce overfitting.

▶ Usually set between 0.2 and 0.5.

21 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

22 www.prace-ri.euPresentation title

Recurrent neural networks (RNN)

▶ When data order matters - sequential input

▶ Certain pathways are cycled

▶ Neurons are fed information:

▶ from the previous layer and

▶ from themselves from the previous pass

▶ Vanishing (or exploding) gradient problem

▶ Tasks: language modeling, speech recognition/generation etc.

23 www.prace-ri.euPresentation title

LSTM & GRU

▶ Solution to short-term memory

▶ Use a more complex recurrent unit

▶ Gates to control what information

is passed through

▶ LSTM: Forget – Input from previous

layers, Update cell state, Output part

of cell state

▶ GRU: Reset (=forget),

Update (=input+previous

cell state)

▶ GRU is faster but less expressive

24 www.prace-ri.euPresentation title

Bidirectional networks (BiRNN, BiLSTM and BiGRU)

▶ Connected to the past, but also to the future

▶ Tasks: fill in gaps, fill in missing parts of images

25 www.prace-ri.euPresentation title

Encoder Decoder Architectures

▶ Input = target,

▶ Learns efficient data representations (encoding

▶ Encode information (as in compress, not encrypt)

▶ Up to the middle: encoding part

▶ In the middle the information is most compressed

▶ From middle till the end: decoding part

▶ Dimensionality reduction and reconstruction

▶ Tasks: remove noise from audio, image, signal

26 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

▶ Tasks: image classification, object detection, video action recognition etc.

27 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

28 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

29 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

30 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

31 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

▶ Tasks: image or audio processing

Conv layer 1 Conv layer 2 Conv layer 3

32 www.prace-ri.euPresentation title

Convolutional neural networks (CNN)

33 www.prace-ri.euPresentation title

What is a Deep Learning Framework?

34 www.prace-ri.euPresentation title

▶ TensorFlow

▶ Keras
▶ Pytorch

▶ Torch (Collobert R., Kavukcuoglu K, Farabet C., 2002)

▶ Caffe (Berkeley Vision and Learning Center, 2013)

▶ Caffe2 (Facebook, 2017, merged with PyTorch)

▶ Theano (University of Montreal, 20010-2017)

▶ Chainer (Preferred Networks, 2015)

▶ Apache MXNet (Apache Software Foundation , 2015)

▶ CNTK (Microsoft Research, 2016)

▶ Deep Sparse Scalable Tensor Network Engine / DSSTNE (Amazon, 2016)

▶ BigDL (Jason Dai (Intel) , 2016)

▶ DyNet (Carnegie Mellon University, 2017)

Frameworks: Introduction

35 www.prace-ri.euPresentation title

Model-level library, as high level API

running on top of backends:

TensorFlow, CNTK, Theano, MXNet.

Open source software library

for numerical computation

using data flow graphs.

Nodes: computations

Edges: tensor flows

Machine learning library

based on the Torch library and

written in Python.

Keras Pytorch Tensorflow

Frameworks: Introduction

36 www.prace-ri.euPresentation title

Frameworks: Introduction

Initial Release: March 2015

Creator: François Chollet

Platforms: Linux, macOS,

Windows

Beginner-friendly,

modular, extensible, good for

fast prototyping.

Initial Release: November 2015

Creator: Google Brain

Platforms: Linux, macOS,

Windows, Android, JavaScript

Preferred for industry.

Very low-level, fast training, ideal

for deployment to production and

with great community support.

Initial Release: October 2016

Creator: Facebook AI Research lab

Platforms: Linux, macOS, Windows

Preferred for academic research and

non-standard models. Easy

debugging and fast training.

Keras Pytorch Tensorflow

37 www.prace-ri.euPresentation title

Frameworks: Introduction

Keras Pytorch Tensorflow

38 www.prace-ri.euPresentation title

Interest over time...

US

Worldwide

39 www.prace-ri.euPresentation title

Tensorflow Installation

TensorFlow Version 2 with CPU and GPU

▶ Python 3.5–3.7

▶ Ubuntu 16.04 or later

▶ Windows 7 or later

▶ macOS 10.12.6 (Sierra) or later

▶ Raspbian 9.0 or later

Older versions of TensorFlow

▶ Version 1.15 and older:

CPU and GPU packages are separate:

pip install tensorflow==1.15 # CPU

pip install tensorflow-gpu==1.15 # GPU

pip install tensorflow

conda install tensorflow

conda install tensorflow-gpu

40 www.prace-ri.euPresentation title

Keras Installation

Keras version 2.3
▶ Python 2.7-3.6 in documentation (+3.7)

▶ First release to support TensorFlow 2.0

▶ Last major release of multi-backend Keras.

Keras will be fully integrated in TF.

▶ With TensorFlow 2.0, you should be using tf.keras

rather than the separate Keras package. Multi-

backend Keras is superseded by tf.keras

from keras... import ...

from tensorflow.keras ... import ...

pip install keras

conda install keras

41 www.prace-ri.euPresentation title

PyTorch installation

conda install pytorch torchvision -c pytorchpip install torch torchvision

42 www.prace-ri.euPresentation title

Comparison table

Keras Tensorflow PyTorch

Ease of use Easy and syntactically
simple

Difficult without keras Medium difficulty

Level of API High High and low Low

Speed Slower Faster Faster

Architecture Simple Complex Complex

Debugging Less frequent need to
debug
But hard debugging

Hard to debug Best debugging
capabilities

Community
support

Larger Larger Smaller

Dataset Smaller Larger Larger

43 www.prace-ri.euPresentation title

Keras

Guiding principles

▶ User friendliness: minimize actions in common uses, clear user errors, simple API

▶ Modularity: model as sequence of fully configurable modules e.g. neural layers, cost

functions, optimizers, activation functions etc.

▶ Easy extensibility: new modules are simple to add (as new classes and functions e.g.

custom loss function, custom layers)

44 www.prace-ri.euPresentation title

Keras

Pros:

▶ It has all the advantages that Tensorflow has to offer.

▶ Prototyping is fast and easy.

▶ You can run the same code with different backend engines.

▶ It is harder to make mistakes.

45 www.prace-ri.euPresentation title

Keras

Cons:

▶ It is harder to pin down trouble line

▶ It does not handle low-level operations such as tensor products, convolutions and so on

itself. It relies on its backend.

▶ It is consistently slower.

▶ It is much less configurable that Tensorflow or Pytorch.

46 www.prace-ri.euPresentation title

Tensorflow

Tensorflow: graph execution engine for ML
▶ Computations in a neural network are organized in terms of:

▶ a forward pass, in which we compute the outputs and

▶ a backwards pass, in which we compute the gradients

▶ Computations are expressed as dataflow graphs.

Graph nodes: mathematical operations

Graph edges: multidimensional data arrays (tensors)

flowing between nodes.

47 www.prace-ri.euPresentation title

Tensorflow

Why Graphs in the first place?

▶ Graph as a platform-independent representation
(deployed to non-pythonic infrastructure e.g. server, phone, GPU, TPU, Raspberry Pi)

▶ Automatic distribution to 100s machines

▶ Take advantage of graph-based optimizations

▶ Easy to differentiate graph (automatic differentiation)

48 www.prace-ri.euPresentation title

Tensorflow: Dynamic vs Static graph definition

Tensorflow 2 introduced eager execution to add the dynamic graph capability.

Before eager execution:

“Define and Run” - the abstract data structures have to be defined in a Graph, before running the model.

To then actually execute the code, a session must be used. In case of changes in the model architecture,

you would have to retrain the model.

After eager execution:

▶ Automatic differentiation available for dynamic code

▶ Play with your model during building

▶ Really understand your model

▶ Improves performance in applications on sequential data e.g. machine translation

49 www.prace-ri.euPresentation title

Tensorflow: Gradient Tape

With the dynamic computation graph, tensors are evaluated immediately and different

operations can occur during each call.

Gradient Tape: Records operations for automatic differentiation.

▶ First, it records all forward-pass operations on a "tape".

▶ Next, it computes the gradients by "playing" the tape backwards.

▶ Then, it discards the tape.

50 www.prace-ri.euPresentation title

Tensorflow

Other features:
▶ TensorFlow Extended: End-to-end platform for deploying production ML pipelines

▶ Tensorflow Serving: Flexible, high-performance serving system for machine learning models,

designed for production environments

▶ TensorFlow has APIs available in several languages e.g. Python, JavaScript, C++, Java, Go, R, Swift

(Early Release)

▶ TensorFlow Lite: Convert a TensorFlow model into a compressed flat buffer and deploy on a mobile.

51 www.prace-ri.euPresentation title

Tensorflow

Other features:
▶ TensorFlow.js: A library for ML in JavaScript and use in the browser or Node.js

▶ Tensorflow Estimators: A high-level API with built in support for distributed training optimization. Has

now integrated in Tensorflow, like Keras.

▶ Modules tf.image and tf.keras.preprocessing for image preprocessing.

▶ Tensorboard visualization library.

▶ Tracking and visualizing metrics (loss and accuracy), parameters (weights, biases)

▶ Visualizing the computational graph (ops and layers).

▶ Displaying images, text and audio data.

52 www.prace-ri.euPresentation title

Tensorflow

Pros:

▶ Simple built-in high-level API (Keras)

▶ Eager execution (dynamic computation graphs).

▶ Support for multiple languages to create deep learning models

▶ Visualizing training with Tensorboard.

▶ Scalable production deployment options, including on mobile (LITE).

▶ Good documentation and community support.

53 www.prace-ri.euPresentation title

Tensorflow

Cons:

▶ It is very low level with a steep learning curve

▶ Demands extensive coding

▶ It is hard to make quick changes

▶ It is not always the fastest option

54 www.prace-ri.euPresentation title

PyTorch

▶ Python version of Torch ML library (computational framework) open-sourced by

Facebook

▶ In terms of high vs low level coding style, PyTorch lies somewhere in between Keras and

TensorFlow.

▶ Autograd package of PyTorch builds dynamic computation graphs from tensors and

automatically computes gradients.

55 www.prace-ri.euPresentation title

PyTorch

Other features:
▶ TorchServe: model server that uses a RESTful API for both inference (prediction) and management

calls (e.g. increase/decrease number of workers for specific model) and brings models to production

faster.
▶ Easy debugging: use Python debugging tools such as pdb, ipdb, PyCharm debugger or old trusty print

statements.
▶ Save model: PyTorch saves models in Pickles, which are Python-based and not portable.

▶ torch.nn.Module: Base class for all neural network modules. Allows creating reusable code which is
very developer friendly.

▶ Visualizations: Pytorch uses Visdom for graphical represenations. Integration with TensorBoard also
exists.

▶ torchvision.transforms: for common image transformations

56 www.prace-ri.euPresentation title

PyTorch

Pros:

▶ Python-like coding

▶ Debugging is easy

▶ It is usually as fast as TensorFlow

▶ It has good documentation

▶ It provides lots of modular pieces that are easy to combine

▶ It is easy to write your own layer types

▶ It uses dynamic computation graphs

57 www.prace-ri.euPresentation title

PyTorch

Cons:

▶ You usually write your own training code (Less plug and play)

▶ It has a smaller online community

▶ Third-parties are needed for visualization

58 www.prace-ri.euPresentation title

v Keras

▶ Beginner

▶ Fast development

▶ Small Dataset

▶ Rapid Prototyping

▶ Multiple back-end

support

Best use case for each

v PyTorch

▶ Academic research

▶ Non-standard

implementation

▶ Debugging capabilities

▶ Pythonic

v Tensorflow

▶ Industry

▶ Deploy to production

▶ Large Dataset

▶ High Performance

59 www.prace-ri.euPresentation title

Let’s see some code…

60 www.prace-ri.euPresentation title

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu

61 www.prace-ri.euPresentation title

62 www.prace-ri.euPresentation title

(10,28x28) (10, 784)

128 neurons 10 neurons784 neurons

(10, 128) (10,10)

H_o

(H_w, H_b) (O_w, O_b)

Input (10, 28x28)

H_w (784, 128)
H_b (10, 128)

H_o (10, 128)

O_w (128, 10)
O_b (10, 10)

-> ReLu -> softmax

