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About Deep Learning Frameworks * 
(*But Were Afraid to Ask)
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o Introduction to Deep Learning

o Theoretical introduction to Deep Learning Frameworks

o Toy implementation on Keras

o Practical comparison of deep learning implementations between

Keras, Tensorflow, Pytorch

Roadmap
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AI vs ML vs DL
Hierarchical Feature Abstraction

Artificial Intelligence

Machine Learning

Deep Learning

Photo from Francois Chollet’s book
“Deep Learning with Python”
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AI vs ML vs DL

Artificial Intelligence

Machine Learning

Deep Learning

Hierarchical Feature Abstraction

Neural network: structured sequence of algebraic 
operations on vectors and matrices
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a

good

talk

avg.

⋅ sum(     )

• A simple example : Predict how positive is a given sentence

Score=

7.6
Truth=

9.4 

←

Loss( pred, truth)

w

𝑣𝑒𝑐 𝑣𝑒𝑐 − α 𝜕𝑙𝑜𝑠𝑠
𝜕𝑣𝑒𝑐

←𝑤 𝑤− α 𝜕𝑙𝑜𝑠𝑠
𝜕𝑤

Deep Learning
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Gradient Descent for Backpropagation

←𝑤 𝑤− α 𝜕𝑙𝑜𝑠𝑠
𝜕𝑤

Optimization algorithm that minimizes a loss function, 
moving repeatedly to the steepest descent.
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Perceptron

▶ With step function -> linear classifier (binary)

▶ Produces a single binary output (0 or 1)

▶ Divides the space with a straight line in two segments
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Deep Learning: Neural network anatomy

▶ Layers: collection of neurons

▶ Neurons: nodes of mathematical computations

▶ Connection: weighted relationship

between nodes of subsequent layers

▶ Weights of the connections

▶ H1: hidden node

▶ HA1: value of H1 passed through the

activation function

▶ Accordingly O1, OA1, B1…
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Model capacity: How many layers and nodes

▶ The more the parameters, the larger the memorization capacity

Rule-of-thumb methods to choose size:

• The number of hidden neurons should be between

the size of the input layer and the size of the output layer. 

• The number of hidden neurons should be 2/3 the

size of the input layer, plus the size of the output layer. 

• The number of hidden neurons should be less than

twice the size of the input layer. 
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The real challenge: generalization

“Travel is fatal to prejudice, 
bigotry, and narrow-mindedness”
- Mark Twain

Generalization refers to your 
model's ability to make valid 
predictions on new, previously 
unseen data.
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The real challenge: generalization

Underfitting:

Too few neurons to learn complex representations in a complicated data set.

Overfitting: 

Too many neurons or too many epochs that lead to the memorization of the training data.

Pareto split principal:

- 20% test set

- 80% for training and validation

(from which 80% for training and 20% for validation)
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Loss function: distance between prediction and 

ground truth

▶ Multiple loss functions.

▶ Choose the right loss function for the task:

Problem Loss Functions

Regression Mean Squared Error Loss, Mean Squared 
Logarithmic Error Loss, Mean Absolute 
Error Loss

Binary 
Classification

Binary Cross-Entropy, Hinge Loss, 
Squared Hinge Loss

Multi-Class 
Classification

Multi-Class Cross-Entropy Loss, Sparse 
Multiclass Cross-Entropy Loss, Kullback
Leibler Divergence Loss
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Sigmoid. S-shaped curve that ranges between 0 and 1.

Squashes arbitrary values into the [0,1] interval,

something that can be interpreted as a probability. 

▶ Tanh: S-shaped curve that ranges

between -1 and 1. 

▶ Rectified Linear Unit (ReLU): Zero for

negative x values. More computationally effective. 

▶ Softmax: outputs probabilities. Ideal for

classification. The outputs should sum to 1.
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Optimizer: Determines how the network will be updated based 
on the loss function.

▶ It implements a specific variant of stochastic gradient descent 
(SGD). 

▶ Popular gradient descent optimization algorithms:
q Adam — Adaptive Moment Estimation
q AdaMax — variant of adam
q RMSProp — Root Mean Square Propagation
q Adagrad — Adaptive Gradient Algorithm
q Adadelta — extension of Adagrad
q Nesterov accelerated gradient
q etc.
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Epoch: Each iteration over all the training data.

▶ Too many epochs -> Overfitting

▶ Take into consideration the loss in the validation 

dataset



19 www.prace-ri.euPresentation title

Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Training step: Each epoch consists of training steps. A training step is each 

forward propagation & backpropagation (parameter update)

▶ Batch Gradient Descent: All the training data are presented to the model at 

once. Each epoch = one training step.

Computationally inefficient for large datasets.

▶ Stochastic Gradient Descent: Only one random sample of the training data 

is presented to the model at each training step. Each epoch = many training 

steps. 

▶ Mini-batch Stochastic Gradient Descent: At each training step, present to 

the model a batch of the data. 

▶ Parameter updates are made once for each batch.
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture

▶ Dropout: applied to a layer, it consists of randomly dropping out 

(setting to zero) a number of output features of the layer during 

training. 

▶ It forces the neural net to “not rely” on any specific node, by making 

the training process noisy.

▶ Thus, it helps reduce overfitting.

▶ Usually set between 0.2 and 0.5. 
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Deep Learning: Hyperparameter tuning

▶ Size of neural network

▶ Loss function

▶ Activation function

▶ Optimizer

▶ Learning rate

▶ Epochs

▶ Batch size

▶ Dropout

▶ Architecture
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Recurrent neural networks (RNN)

▶ When data order matters - sequential input

▶ Certain pathways are cycled

▶ Neurons are fed information:

▶ from the previous layer and

▶ from themselves from the previous pass

▶ Vanishing (or exploding) gradient problem

▶ Tasks: language modeling, speech recognition/generation etc.
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LSTM & GRU

▶ Solution to short-term memory

▶ Use a more complex recurrent unit

▶ Gates to control what information

is passed through

▶ LSTM: Forget – Input from previous

layers, Update cell state, Output part

of cell state

▶ GRU: Reset (=forget), 

Update (=input+previous

cell state)

▶ GRU is faster but less expressive 
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Bidirectional networks (BiRNN, BiLSTM and BiGRU)

▶ Connected to the past, but also to the future

▶ Tasks: fill in gaps, fill in missing parts of images
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Encoder Decoder Architectures

▶ Input = target, 

▶ Learns efficient data representations (encoding

▶ Encode information (as in compress, not encrypt)

▶ Up to the middle: encoding part

▶ In the middle the information is most compressed

▶ From middle till the end: decoding part

▶ Dimensionality reduction and reconstruction

▶ Tasks: remove noise from audio, image, signal
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Convolutional neural networks (CNN)

▶ Tasks: image classification, object detection, video action recognition etc.
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Convolutional neural networks (CNN)
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Convolutional neural networks (CNN)
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Convolutional neural networks (CNN)
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Convolutional neural networks (CNN)
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Convolutional neural networks (CNN)

▶ Tasks: image or audio processing

Conv layer 1 Conv layer 2 Conv layer 3
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Convolutional neural networks (CNN)
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What is a Deep Learning Framework?
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▶ TensorFlow

▶ Keras
▶ Pytorch

▶ Torch (Collobert R., Kavukcuoglu K, Farabet C., 2002)

▶ Caffe (Berkeley Vision and Learning Center, 2013)

▶ Caffe2 (Facebook, 2017, merged with PyTorch)

▶ Theano (University of Montreal, 20010-2017)

▶ Chainer (Preferred Networks, 2015)

▶ Apache MXNet (Apache Software Foundation , 2015)

▶ CNTK (Microsoft Research, 2016)

▶ Deep Sparse Scalable Tensor Network Engine /  DSSTNE (Amazon, 2016)

▶ BigDL (Jason Dai (Intel) , 2016)

▶ DyNet (Carnegie Mellon University, 2017)

Frameworks: Introduction
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Model-level library, as high level API

running on top of backends: 

TensorFlow, CNTK, Theano, MXNet.

Open source software library

for numerical computation

using data flow graphs.

Nodes: computations

Edges: tensor flows

Machine learning library

based on the Torch library and 

written in Python.

Keras Pytorch Tensorflow

Frameworks: Introduction
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Frameworks: Introduction

Initial Release: March 2015

Creator: François Chollet

Platforms: Linux, macOS, 

Windows

Beginner-friendly,

modular, extensible, good for 

fast prototyping.

Initial Release: November 2015

Creator: Google Brain

Platforms: Linux, macOS, 

Windows, Android, JavaScript

Preferred for industry. 

Very low-level, fast training, ideal 

for deployment to production and 

with great community support.

Initial Release: October 2016

Creator: Facebook AI Research lab

Platforms: Linux, macOS, Windows

Preferred for academic research and 

non-standard models. Easy 

debugging and fast training.

Keras Pytorch Tensorflow
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Frameworks: Introduction

Keras Pytorch Tensorflow
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Interest over time...

US

Worldwide
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Tensorflow Installation

TensorFlow Version 2 with CPU and GPU

▶ Python 3.5–3.7

▶ Ubuntu 16.04 or later

▶ Windows 7 or later

▶ macOS 10.12.6 (Sierra) or later 

▶ Raspbian 9.0 or later

Older versions of TensorFlow

▶ Version 1.15 and older:

CPU and GPU packages are separate:

pip install tensorflow==1.15 # CPU

pip install tensorflow-gpu==1.15 # GPU

pip install tensorflow

conda install tensorflow

conda install tensorflow-gpu
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Keras Installation

Keras version 2.3
▶ Python 2.7-3.6 in documentation (+3.7)

▶ First release to support TensorFlow 2.0

▶ Last major release of multi-backend Keras.

Keras will be fully integrated in TF.

▶ With TensorFlow 2.0, you should be using tf.keras

rather than the separate Keras package. Multi-

backend Keras is superseded by tf.keras

from keras... import ... 

from tensorflow.keras ... import ...

pip install keras

conda install keras
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PyTorch installation

conda install pytorch torchvision -c pytorchpip install torch torchvision
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Comparison table

# Keras Tensorflow PyTorch

Ease of use Easy and syntactically 
simple

Difficult without keras Medium difficulty

Level of API High High and low Low

Speed Slower Faster Faster

Architecture Simple Complex Complex

Debugging Less frequent need to 
debug
But hard debugging

Hard to debug Best debugging 
capabilities

Community 
support

Larger Larger Smaller

Dataset Smaller Larger Larger
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Keras

Guiding principles

▶ User friendliness: minimize actions in common uses, clear user errors, simple API

▶ Modularity: model as sequence of fully configurable modules e.g. neural layers, cost 

functions, optimizers, activation functions etc.

▶ Easy extensibility: new modules are simple to add (as new classes and functions e.g. 

custom loss function, custom layers)
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Keras

Pros:

▶ It has all the advantages that Tensorflow has to offer.

▶ Prototyping is fast and easy.

▶ You can run the same code with different backend engines.

▶ It is harder to make mistakes.
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Keras

Cons:

▶ It is harder to pin down trouble line

▶ It does not handle low-level operations such as tensor products, convolutions and so on 

itself. It relies on its backend.

▶ It is consistently slower.

▶ It is much less configurable that Tensorflow or Pytorch.
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Tensorflow

Tensorflow: graph execution engine for ML
▶ Computations in a neural network are organized in terms of:

▶ a forward pass, in which we compute the outputs and

▶ a backwards pass, in which we compute the gradients

▶ Computations are expressed as dataflow graphs.

Graph nodes: mathematical operations

Graph edges: multidimensional data arrays (tensors)

flowing between nodes. 
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Tensorflow

Why Graphs in the first place?

▶ Graph as a platform-independent representation
(deployed to non-pythonic infrastructure e.g. server, phone, GPU, TPU, Raspberry Pi)

▶ Automatic distribution to 100s machines

▶ Take advantage of graph-based optimizations

▶ Easy to differentiate graph (automatic differentiation)
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Tensorflow: Dynamic vs Static graph definition 

Tensorflow 2 introduced eager execution to add the dynamic graph capability.

Before eager execution:

“Define and Run” - the abstract data structures have to be defined in a Graph, before running the model. 

To then actually execute the code, a session must be used. In case of changes in the model architecture, 

you would have to retrain the model.

After eager execution:

▶ Automatic differentiation available for dynamic code

▶ Play with your model during building

▶ Really understand your model

▶ Improves performance in applications on sequential data e.g. machine translation
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Tensorflow: Gradient Tape

With the dynamic computation graph, tensors are evaluated immediately and different 

operations can occur during each call.

Gradient Tape: Records operations for automatic differentiation.

▶ First, it records all forward-pass operations on a "tape".

▶ Next, it computes the gradients by "playing" the tape backwards.

▶ Then, it discards the tape.
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Tensorflow

Other features:
▶ TensorFlow Extended: End-to-end platform for deploying production ML pipelines

▶ Tensorflow Serving: Flexible, high-performance serving system for machine learning models, 

designed for production environments

▶ TensorFlow has APIs available in several languages e.g. Python, JavaScript, C++, Java, Go, R, Swift 

(Early Release)

▶ TensorFlow Lite: Convert a TensorFlow model into a compressed flat buffer and deploy on a mobile.
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Tensorflow

Other features:
▶ TensorFlow.js: A library for ML in JavaScript and use in the browser or Node.js

▶ Tensorflow Estimators: A high-level API with built in support for distributed training optimization. Has 

now integrated in Tensorflow, like Keras.

▶ Modules tf.image and tf.keras.preprocessing for image preprocessing.

▶ Tensorboard visualization library.

▶ Tracking and visualizing metrics (loss and accuracy), parameters (weights, biases)

▶ Visualizing the computational graph (ops and layers).

▶ Displaying images, text and audio data.
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Tensorflow

Pros:

▶ Simple built-in high-level API (Keras)

▶ Eager execution (dynamic computation graphs).

▶ Support for multiple languages to create deep learning models

▶ Visualizing training with Tensorboard.

▶ Scalable production deployment options, including on mobile (LITE).

▶ Good documentation and community support.
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Tensorflow

Cons:

▶ It is very low level with a steep learning curve

▶ Demands extensive coding

▶ It is hard to make quick changes

▶ It is not always the fastest option
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PyTorch

▶ Python version of Torch ML library (computational framework) open-sourced by 

Facebook

▶ In terms of high vs low level coding style, PyTorch lies somewhere in between Keras and 

TensorFlow. 

▶ Autograd package of PyTorch builds dynamic computation graphs from tensors and 

automatically computes gradients.
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PyTorch

Other features:
▶ TorchServe: model server that uses a RESTful API for both inference (prediction) and management 

calls (e.g. increase/decrease number of workers for specific model) and brings models to production 

faster.
▶ Easy debugging: use Python debugging tools such as pdb, ipdb, PyCharm debugger or old trusty print 

statements.
▶ Save model: PyTorch saves models in Pickles, which are Python-based and not portable.

▶ torch.nn.Module: Base class for all neural network modules. Allows creating reusable code which is 
very developer friendly.

▶ Visualizations: Pytorch uses Visdom for graphical represenations. Integration with TensorBoard also 
exists.

▶ torchvision.transforms:  for common image transformations
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PyTorch

Pros:

▶ Python-like coding

▶ Debugging is easy

▶ It is usually as fast as TensorFlow

▶ It has good documentation

▶ It provides lots of modular pieces that are easy to combine

▶ It is easy to write your own layer types

▶ It uses dynamic computation graphs
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PyTorch

Cons:

▶ You usually write your own training code (Less plug and play)

▶ It has a smaller online community

▶ Third-parties are needed for visualization
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v Keras

▶ Beginner

▶ Fast development

▶ Small Dataset

▶ Rapid Prototyping

▶ Multiple back-end 

support

Best use case for each

v PyTorch

▶ Academic research

▶ Non-standard 

implementation

▶ Debugging capabilities

▶ Pythonic

v Tensorflow

▶ Industry

▶ Deploy to production

▶ Large Dataset

▶ High Performance
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Let’s see some code…
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THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu



61 www.prace-ri.euPresentation title



62 www.prace-ri.euPresentation title

(10,28x28) (10, 784)

128 neurons 10 neurons784 neurons

(10, 128) (10,10)

H_o

(H_w, H_b) (O_w, O_b)

Input (10, 28x28)

H_w (784, 128)
H_b (10, 128)

H_o (10, 128)

O_w (128, 10)
O_b (10, 10)

-> ReLu -> softmax


